BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 26523388)

  • 41. Patches of Dysflective Cones in Eyes With No Known Disease.
    Bensinger E; Wang Y; Roorda A
    Invest Ophthalmol Vis Sci; 2022 Jan; 63(1):29. PubMed ID: 35072690
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparing Parafoveal Cone Photoreceptor Mosaic Metrics in Younger and Older Age Groups Using an Adaptive Optics Retinal Camera.
    Jacob J; Paques M; Krivosic V; Dupas B; Erginay A; Tadayoni R; Gaudric A
    Ophthalmic Surg Lasers Imaging Retina; 2017 Jan; 48(1):45-50. PubMed ID: 28060393
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Disorganization of the retinal inner layers as a predictor of visual acuity in eyes with center-involved diabetic macular edema.
    Sun JK; Lin MM; Lammer J; Prager S; Sarangi R; Silva PS; Aiello LP
    JAMA Ophthalmol; 2014 Nov; 132(11):1309-16. PubMed ID: 25058813
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Interpretation of Flood-Illuminated Adaptive Optics Images in Subjects with Retinitis Pigmentosa.
    Gale MJ; Feng S; Titus HE; Smith TB; Pennesi ME
    Adv Exp Med Biol; 2016; 854():291-7. PubMed ID: 26427424
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The cellular origins of the outer retinal bands in optical coherence tomography images.
    Jonnal RS; Kocaoglu OP; Zawadzki RJ; Lee SH; Werner JS; Miller DT
    Invest Ophthalmol Vis Sci; 2014 Oct; 55(12):7904-18. PubMed ID: 25324288
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In vivo imaging of a cone mosaic in a patient with achromatopsia associated with a GNAT2 variant.
    Ueno S; Nakanishi A; Kominami T; Ito Y; Hayashi T; Yoshitake K; Kawamura Y; Tsunoda K; Iwata T; Terasaki H
    Jpn J Ophthalmol; 2017 Jan; 61(1):92-98. PubMed ID: 27718025
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Retinal development of West Australian dhufish, Glaucosoma hebraicum.
    Shand J; Archer MA; Thomas N; Cleary J
    Vis Neurosci; 2001; 18(5):711-24. PubMed ID: 11925007
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Noninvasive imaging of the tree shrew eye: Wavefront analysis and retinal imaging with correlative histology.
    Sajdak BS; Salmon AE; Cava JA; Allen KP; Freling S; Ramamirtham R; Norton TT; Roorda A; Carroll J
    Exp Eye Res; 2019 Aug; 185():107683. PubMed ID: 31158381
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Determination of the foveal cone spacing by ocular speckle interferometry: limiting factors and acuity predictions.
    Marcos S; Navarro R
    J Opt Soc Am A Opt Image Sci Vis; 1997 Apr; 14(4):731-40. PubMed ID: 9088086
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The reflectance of single cones in the living human eye.
    Pallikaris A; Williams DR; Hofer H
    Invest Ophthalmol Vis Sci; 2003 Oct; 44(10):4580-92. PubMed ID: 14507907
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In Vivo Two-Photon Fluorescence Kinetics of Primate Rods and Cones.
    Sharma R; Schwarz C; Williams DR; Palczewska G; Palczewski K; Hunter JJ
    Invest Ophthalmol Vis Sci; 2016 Feb; 57(2):647-57. PubMed ID: 26903225
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Correlation between length of foveal cone outer segment tips line defect and visual acuity after macular hole closure.
    Itoh Y; Inoue M; Rii T; Hiraoka T; Hirakata A
    Ophthalmology; 2012 Jul; 119(7):1438-46. PubMed ID: 22424577
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Correlation between foveal cone outer segment tips line and visual recovery after epiretinal membrane surgery.
    Itoh Y; Inoue M; Rii T; Hirota K; Hirakata A
    Invest Ophthalmol Vis Sci; 2013 Nov; 54(12):7302-8. PubMed ID: 24106115
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Functional topography of rod and cone photoreceptors in macaque retina determined by retinal densitometry.
    Hanazono G; Tsunoda K; Kazato Y; Suzuki W; Tanifuji M
    Invest Ophthalmol Vis Sci; 2012 May; 53(6):2796-803. PubMed ID: 22427587
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Appearance of medium-large drusen and reticular pseudodrusen on adaptive optics in age-related macular degeneration.
    Querques G; Kamami-Levy C; Blanco-Garavito R; Georges A; Pedinielli A; Capuano V; Poulon F; Souied EH
    Br J Ophthalmol; 2014 Nov; 98(11):1522-7. PubMed ID: 24985725
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The Properties of Outer Retinal Band Three Investigated With Adaptive-Optics Optical Coherence Tomography.
    Jonnal RS; Gorczynska I; Migacz JV; Azimipour M; Zawadzki RJ; Werner JS
    Invest Ophthalmol Vis Sci; 2017 Sep; 58(11):4559-4568. PubMed ID: 28877320
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Variability in Human Cone Topography Assessed by Adaptive Optics Scanning Laser Ophthalmoscopy.
    Zhang T; Godara P; Blanco ER; Griffin RL; Wang X; Curcio CA; Zhang Y
    Am J Ophthalmol; 2015 Aug; 160(2):290-300.e1. PubMed ID: 25935100
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Melanin and the regulation of mammalian photoreceptor topography.
    Jeffery G; Darling K; Whitmore A
    Eur J Neurosci; 1994 Apr; 6(4):657-67. PubMed ID: 8025716
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mammalian vision: rods are a bargain.
    Warrant EJ
    Curr Biol; 2009 Jan; 19(2):R69-71. PubMed ID: 19174142
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Spectral-domain optical coherence tomography imaging of the detached macula in rhegmatogenous retinal detachment.
    Nakanishi H; Hangai M; Unoki N; Sakamoto A; Tsujikawa A; Kita M; Yoshimura N
    Retina; 2009 Feb; 29(2):232-42. PubMed ID: 18997641
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.