These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 26523480)

  • 1. Engineering 3D Nanoplasmonic Assemblies for High Performance Spectroscopic Sensing.
    Dinda S; Suresh V; Thoniyot P; Balčytis A; Juodkazis S; Krishnamoorthy S
    ACS Appl Mater Interfaces; 2015 Dec; 7(50):27661-6. PubMed ID: 26523480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wafer-Scale Nanopillars Derived from Block Copolymer Lithography for Surface-Enhanced Raman Spectroscopy.
    Li T; Wu K; Rindzevicius T; Wang Z; Schulte L; Schmidt MS; Boisen A; Ndoni S
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15668-75. PubMed ID: 27254397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-area plasmonic hot-spot arrays: sub-2 nm interparticle separations with plasma-enhanced atomic layer deposition of Ag on periodic arrays of Si nanopillars.
    Caldwell JD; Glembocki OJ; Bezares FJ; Kariniemi MI; Niinistö JT; Hatanpää TT; Rendell RW; Ukaegbu M; Ritala MK; Prokes SM; Hosten CM; Leskelä MA; Kasica R
    Opt Express; 2011 Dec; 19(27):26056-64. PubMed ID: 22274194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled fabrication of nanopillar arrays as active substrates for surface-enhanced Raman spectroscopy.
    Ruan C; Eres G; Wang W; Zhang Z; Gu B
    Langmuir; 2007 May; 23(10):5757-60. PubMed ID: 17425344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-lithographic SERS substrates: tailoring surface chemistry for Au nanoparticle cluster assembly.
    Adams SM; Campione S; Caldwell JD; Bezares FJ; Culbertson JC; Capolino F; Ragan R
    Small; 2012 Jul; 8(14):2239-49. PubMed ID: 22528745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inherently reproducible fabrication of plasmonic nanoparticle arrays for SERS by combining nanoimprint and copolymer lithography.
    Krishnamoorthy S; Krishnan S; Thoniyot P; Low HY
    ACS Appl Mater Interfaces; 2011 Apr; 3(4):1033-40. PubMed ID: 21375254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers.
    Yap FL; Thoniyot P; Krishnan S; Krishnamoorthy S
    ACS Nano; 2012 Mar; 6(3):2056-70. PubMed ID: 22332718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hot-spot engineering in polygonal nanofinger assemblies for surface enhanced Raman spectroscopy.
    Ou FS; Hu M; Naumov I; Kim A; Wu W; Bratkovsky AM; Li X; Williams RS; Li Z
    Nano Lett; 2011 Jun; 11(6):2538-42. PubMed ID: 21604751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using colloid lithography to fabricate silicon nanopillar arrays on silicon substrates.
    Chen JK; Qui JQ; Fan SK; Kuo SW; Ko FH; Chu CW; Chang FC
    J Colloid Interface Sci; 2012 Feb; 367(1):40-8. PubMed ID: 22104277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors.
    Caldwell JD; Glembocki O; Bezares FJ; Bassim ND; Rendell RW; Feygelson M; Ukaegbu M; Kasica R; Shirey L; Hosten C
    ACS Nano; 2011 May; 5(5):4046-55. PubMed ID: 21480637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-dimensionally self-arranged protein nanoarrays on diblock copolymer templates.
    Kumar N; Parajuli O; Hahm JI
    J Phys Chem B; 2007 May; 111(17):4581-7. PubMed ID: 17425355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 300 mm Wafer-level, ultra-dense arrays of Au-capped nanopillars with sub-10 nm gaps as reliable SERS substrates.
    Li J; Chen C; Jans H; Xu X; Verellen N; Vos I; Okumura Y; Moshchalkov VV; Lagae L; Van Dorpe P
    Nanoscale; 2014 Nov; 6(21):12391-6. PubMed ID: 25231127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multifunctional porous silicon nanopillar arrays: antireflection, superhydrophobicity, photoluminescence, and surface-enhanced Raman scattering.
    Kiraly B; Yang S; Huang TJ
    Nanotechnology; 2013 Jun; 24(24):245704. PubMed ID: 23703091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-Dimensional Surface-Enhanced Raman Scattering Platforms: Large-Scale Plasmonic Hotspots for New Applications in Sensing, Microreaction, and Data Storage.
    Phan-Quang GC; Han X; Koh CSL; Sim HYF; Lay CL; Leong SX; Lee YH; Pazos-Perez N; Alvarez-Puebla RA; Ling XY
    Acc Chem Res; 2019 Jul; 52(7):1844-1854. PubMed ID: 31180637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quasi-3D gold nanoring cavity arrays with high-density hot-spots for SERS applications via nanosphere lithography.
    Ho CC; Zhao K; Lee TY
    Nanoscale; 2014 Aug; 6(15):8606-11. PubMed ID: 24978350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning plasmons layer-by-layer for quantitative colloidal sensing with surface-enhanced Raman spectroscopy.
    Anderson WJ; Nowinska K; Hutter T; Mahajan S; Fischlechner M
    Nanoscale; 2018 Apr; 10(15):7138-7146. PubMed ID: 29616248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analyte Co-localization at Electromagnetic Gap Hot-Spots for Highly Sensitive (Bio)molecular Detection by Plasmon Enhanced Spectroscopies.
    Rastogi R; Arianfard H; Moss D; Juodkazis S; Adam PM; Krishnamoorthy S
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):9113-9121. PubMed ID: 33583180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanically Self-Assembled, Three-Dimensional Graphene-Gold Hybrid Nanostructures for Advanced Nanoplasmonic Sensors.
    Leem J; Wang MC; Kang P; Nam S
    Nano Lett; 2015 Nov; 15(11):7684-90. PubMed ID: 26501429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance Characteristics of Bio-Inspired Metal Nanostructures as Surface-Enhanced Raman Scattered (SERS) Substrates.
    Areizaga-Martinez HI; Kravchenko I; Lavrik NV; Sepaniak MJ; Hernández-Rivera SP; De Jesús MA
    Appl Spectrosc; 2016 Sep; 70(9):1432-45. PubMed ID: 27566257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembled quasi-hexagonal arrays of gold nanoparticles with small gaps for surface-enhanced Raman spectroscopy.
    Gürdal E; Dickreuter S; Noureddine F; Bieschke P; Kern DP; Fleischer M
    Beilstein J Nanotechnol; 2018; 9():1977-1985. PubMed ID: 30116689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.