These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 26523559)

  • 1. Technical note: Acceleration of sparse operations for average-information REML analyses with supernodal methods and sparse-storage refinements.
    Masuda Y; Aguilar I; Tsuruta S; Misztal I
    J Anim Sci; 2015 Oct; 93(10):4670-4. PubMed ID: 26523559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of supernodal sparse factorization and inversion to the estimation of (co)variance components by residual maximum likelihood.
    Masuda Y; Baba T; Suzuki M
    J Anim Breed Genet; 2014 Jun; 131(3):227-36. PubMed ID: 24906028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Technical note: Avoiding the direct inversion of the numerator relationship matrix for genotyped animals in single-step genomic best linear unbiased prediction solved with the preconditioned conjugate gradient.
    Masuda Y; Misztal I; Legarra A; Tsuruta S; Lourenco DA; Fragomeni BO; Aguilar I
    J Anim Sci; 2017 Jan; 95(1):49-52. PubMed ID: 28177357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Invited review: efficient computation strategies in genomic selection.
    Misztal I; Legarra A
    Animal; 2017 May; 11(5):731-736. PubMed ID: 27869042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An efficient exact method to obtain GBLUP and single-step GBLUP when the genomic relationship matrix is singular.
    Fernando RL; Cheng H; Garrick DJ
    Genet Sel Evol; 2016 Oct; 48(1):80. PubMed ID: 27788669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reliable computing in estimation of variance components.
    Misztal I
    J Anim Breed Genet; 2008 Dec; 125(6):363-70. PubMed ID: 19134071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of an approximate REML algorithm for parameter estimation in a multitrait, multiple across-country evaluation model: a simulation study.
    Tarrés J; Liu Z; Ducrocq V; Reinhardt F; Reents R
    J Dairy Sci; 2007 Oct; 90(10):4846-55. PubMed ID: 17881708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accounting for trait architecture in genomic predictions of US Holstein cattle using a weighted realized relationship matrix.
    Tiezzi F; Maltecca C
    Genet Sel Evol; 2015 Apr; 47(1):24. PubMed ID: 25886167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A single-step genomic model with direct estimation of marker effects.
    Liu Z; Goddard ME; Reinhardt F; Reents R
    J Dairy Sci; 2014 Sep; 97(9):5833-50. PubMed ID: 25022678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Technical note: An R package for fitting Bayesian regularized neural networks with applications in animal breeding.
    Pérez-Rodríguez P; Gianola D; Weigel KA; Rosa GJ; Crossa J
    J Anim Sci; 2013 Aug; 91(8):3522-31. PubMed ID: 23658327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic predictions based on animal models using genotype imputation on a national scale in Norwegian Red cattle.
    Meuwissen TH; Svendsen M; Solberg T; Ødegård J
    Genet Sel Evol; 2015 Oct; 47():79. PubMed ID: 26464226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implementation of genomic recursions in single-step genomic best linear unbiased predictor for US Holsteins with a large number of genotyped animals.
    Masuda Y; Misztal I; Tsuruta S; Legarra A; Aguilar I; Lourenco DAL; Fragomeni BO; Lawlor TJ
    J Dairy Sci; 2016 Mar; 99(3):1968-1974. PubMed ID: 26805987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solving efficiently large single-step genomic best linear unbiased prediction models.
    Strandén I; Matilainen K; Aamand GP; Mäntysaari EA
    J Anim Breed Genet; 2017 Jun; 134(3):264-274. PubMed ID: 28508482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dimensionality of genomic information and performance of the Algorithm for Proven and Young for different livestock species.
    Pocrnic I; Lourenco DA; Masuda Y; Misztal I
    Genet Sel Evol; 2016 Oct; 48(1):82. PubMed ID: 27799053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stochastic Lanczos estimation of genomic variance components for linear mixed-effects models.
    Border R; Becker S
    BMC Bioinformatics; 2019 Jul; 20(1):411. PubMed ID: 31362713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of the preconditioned conjugate gradient algorithm as a generic solver for mixed-model equations in animal breeding applications.
    Tsuruta S; Misztal I; Strandén I
    J Anim Sci; 2001 May; 79(5):1166-72. PubMed ID: 11374535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Technical note: an R package for fitting sparse neural networks with application in animal breeding.
    Wang Y; Mi X; Rosa GJM; Chen Z; Lin P; Wang S; Bao Z
    J Anim Sci; 2018 May; 96(5):2016-2026. PubMed ID: 29529218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single step genomic evaluation for female fertility in Nordic Red dairy cattle.
    Matilainen K; Strandén I; Aamand GP; Mäntysaari EA
    J Anim Breed Genet; 2018 Oct; 135(5):337-348. PubMed ID: 30112802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applied animal genomics: results from the field.
    Van Eenennaam AL; Weigel KA; Young AE; Cleveland MA; Dekkers JC
    Annu Rev Anim Biosci; 2014 Feb; 2():105-39. PubMed ID: 25384137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inexpensive Computation of the Inverse of the Genomic Relationship Matrix in Populations with Small Effective Population Size.
    Misztal I
    Genetics; 2016 Feb; 202(2):401-9. PubMed ID: 26584903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.