BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 26524251)

  • 1. Spirulina cultivation with a CO2 absorbent: Influence on growth parameters and macromolecule production.
    Rosa GM; Moraes L; de Souza Mda R; Costa JA
    Bioresour Technol; 2016 Jan; 200():528-34. PubMed ID: 26524251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical absorption and CO2 biofixation via the cultivation of Spirulina in semicontinuous mode with nutrient recycle.
    da Rosa GM; Moraes L; Cardias BB; de Souza Mda R; Costa JA
    Bioresour Technol; 2015 Sep; 192():321-7. PubMed ID: 26051496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Green alga cultivation with monoethanolamine: Evaluation of CO
    Rosa GMD; Morais MG; Costa JAV
    Bioresour Technol; 2018 Aug; 261():206-212. PubMed ID: 29660662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CO
    Cardias BB; Morais MG; Costa JAV
    Bioresour Technol; 2018 Nov; 267():77-83. PubMed ID: 30015001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fed-batch cultivation with CO
    Rosa GM; Morais MG; Costa JAV
    Bioresour Technol; 2019 Feb; 273():627-633. PubMed ID: 30502642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of nitrogen on growth, biomass composition, production, and properties of polyhydroxyalkanoates (PHAs) by microalgae.
    Costa SS; Miranda AL; Andrade BB; Assis DJ; Souza CO; de Morais MG; Costa JAV; Druzian JI
    Int J Biol Macromol; 2018 Sep; 116():552-562. PubMed ID: 29763703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of the CO2 absorbent monoethanolamine on growth and carbon fixation by the green alga Scenedesmus sp.
    Choi W; Kim G; Lee K
    Bioresour Technol; 2012 Sep; 120():295-9. PubMed ID: 22771020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CO2 Biofixation by the Cyanobacterium Spirulina sp. LEB 18 and the Green Alga Chlorella fusca LEB 111 Grown Using Gas Effluents and Solid Residues of Thermoelectric Origin.
    da Silva Vaz B; Costa JA; de Morais MG
    Appl Biochem Biotechnol; 2016 Jan; 178(2):418-29. PubMed ID: 26453033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic fields as triggers of microalga growth: evaluation of its effect on Spirulina sp.
    Deamici KM; Costa JAV; Santos LO
    Bioresour Technol; 2016 Nov; 220():62-67. PubMed ID: 27566513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spirulina sp. LEB 18 cultivation in seawater and reduced nutrients: Bioprocess strategy for increasing carbohydrates in biomass.
    Bezerra PQM; Moraes L; Cardoso LG; Druzian JI; Morais MG; Nunes IL; Costa JAV
    Bioresour Technol; 2020 Nov; 316():123883. PubMed ID: 32739575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of carbon-dioxide on the growth of Spirulina sp. (MCRC-A0003) isolated from Muttukadu backwaters, South India.
    Sivakumar M; Ranjith Kumar R; Shashirekha V; Seshadri S
    World J Microbiol Biotechnol; 2014 Oct; 30(10):2775-81. PubMed ID: 24948403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Innovative development of membrane sparger for carbon dioxide supply in microalgae cultures.
    Moraes L; da Rosa GM; Santos LO; Costa JAV
    Biotechnol Prog; 2020 Jul; 36(4):e2987. PubMed ID: 32108987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of extracts from oyster shell and soil for cultivation of Spirulina maxima.
    Jung JY; Kim S; Lee H; Kim K; Kim W; Park MS; Kwon JH; Yang JW
    Bioprocess Biosyst Eng; 2014 Dec; 37(12):2395-400. PubMed ID: 24871274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Attached cultivation for improving the biomass productivity of Spirulina platensis.
    Zhang L; Chen L; Wang J; Chen Y; Gao X; Zhang Z; Liu T
    Bioresour Technol; 2015 Apr; 181():136-42. PubMed ID: 25647023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-scale cultivation of Spirulina in a floating horizontal photobioreactor without aeration or an agitation device.
    Zhu C; Zhai X; Wang J; Han D; Li Y; Xi Y; Tang Y; Chi Z
    Appl Microbiol Biotechnol; 2018 Oct; 102(20):8979-8987. PubMed ID: 30056515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering strategies for simultaneous enhancement of C-phycocyanin production and CO2 fixation with Spirulina platensis.
    Chen CY; Kao PC; Tsai CJ; Lee DJ; Chang JS
    Bioresour Technol; 2013 Oct; 145():307-12. PubMed ID: 23664178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological CO
    Duarte JH; de Morais EG; Radmann EM; Costa JAV
    Bioresour Technol; 2017 Jun; 234():472-475. PubMed ID: 28342576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spirulina platensis is more efficient than Chlorella homosphaera in carbohydrate productivity.
    Margarites AC; Volpato N; Araújo E; Cardoso LG; Bertolin TE; Colla LM; Costa JAV
    Environ Technol; 2017 Sep; 38(17):2209-2216. PubMed ID: 27790947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cultivation strategy to stimulate high carbohydrate content in Spirulina biomass.
    Braga VDS; Mastrantonio DJDS; Costa JAV; Morais MG
    Bioresour Technol; 2018 Dec; 269():221-226. PubMed ID: 30176519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of the carbohydrate content in Spirulina by applying CO
    Braga VDS; Moreira JB; Costa JAV; Morais MG
    Int J Biol Macromol; 2019 Feb; 123():1241-1247. PubMed ID: 30521909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.