These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 26524272)

  • 21. Analysis of Plant and Soil Restoration Process and Degree of Refuse Dumps in Open-Pit Coal Mining Areas.
    Li X; Lei S; Liu F; Wang W
    Int J Environ Res Public Health; 2020 Mar; 17(6):. PubMed ID: 32192173
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Soil organic carbon and nitrogen accumulation on coal mine spoils reclaimed with maritime pine (Pinus pinaster Aiton) in Agacli-Istanbul.
    Sever H; Makineci E
    Environ Monit Assess; 2009 Aug; 155(1-4):273-80. PubMed ID: 18604588
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Organic waste amendments for restoration of physicochemical and biological productivity of mine spoil dump for sustainable development.
    Raghunathan K; Marathe D; Singh A; Thawale P
    Environ Monit Assess; 2021 Aug; 193(9):599. PubMed ID: 34432167
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Linking heavy metal bioavailability (Cd, Cu, Zn and Pb) in Scots pine needles to soil properties in reclaimed mine areas.
    Pietrzykowski M; Socha J; van Doorn NS
    Sci Total Environ; 2014 Feb; 470-471():501-10. PubMed ID: 24176697
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dump stability and soil fertility of a coal mine spoil in Indian dry tropical environment: a long-term study.
    Tripathi N; Singh RS; Chaulya SK
    Environ Manage; 2012 Oct; 50(4):695-706. PubMed ID: 22842748
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessment of Robinia pseudoacacia cultivations as a restoration strategy for reclaimed mine spoil heaps.
    Vlachodimos K; Papatheodorou EM; Diamantopoulos J; Monokrousos N
    Environ Monit Assess; 2013 Aug; 185(8):6921-32. PubMed ID: 23322505
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preferential flow characteristics of reclaimed mine soils in a surface coal mine dump.
    Gang L; Jun L; Yexin L; Ting W; Yazhuo L; Xinyang F
    Environ Monit Assess; 2017 Jun; 189(6):266. PubMed ID: 28497296
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative assessment of soil quality dynamics using SQI modelling approach: a study in rice bowl of West Bengal, India.
    Maji P; Mistri B
    Environ Monit Assess; 2024 May; 196(6):567. PubMed ID: 38775991
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Soil management of copper mine tailing soils--sludge amendment and tree vegetation could improve biological soil quality.
    Asensio V; Covelo EF; Kandeler E
    Sci Total Environ; 2013 Jul; 456-457():82-90. PubMed ID: 23584036
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Carbon sequestration in reclaimed manganese mine land at Gumgaon, India.
    Juwarkar AA; Mehrotraa KL; Nair R; Wanjari T; Singh SK; Chakrabarti T
    Environ Monit Assess; 2010 Jan; 160(1-4):457-64. PubMed ID: 19130274
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of different forms of acidities on soil microbiological properties and enzyme activities at an acid mine drainage contaminated site.
    Sahoo PK; Bhattacharyya P; Tripathy S; Equeenuddin SM; Panigrahi MK
    J Hazard Mater; 2010 Jul; 179(1-3):966-75. PubMed ID: 20417031
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vegetation dynamics in Bishrampur collieries of northern Chhattisgarh, India: eco-restoration and management perspectives.
    Kumar A; Jhariya MK; Yadav DK; Banerjee A
    Environ Monit Assess; 2017 Aug; 189(8):371. PubMed ID: 28681320
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Anthropedogenesis in coal mine overburden; the need for a comprehensive, fundamental biogeochemical approach.
    Gunathunga SU; Gagen EJ; Evans PN; Erskine PD; Southam G
    Sci Total Environ; 2023 Sep; 892():164515. PubMed ID: 37268119
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Data on physico-chemical characteristics and elemental composition of gray forest soils (Greyzemic Phaeozems) in natural-technogenic landscapes of Moscow brown coal basin.
    Kostin AS; Krechetov PP; Chernitsova OV; Terskaya EV
    Data Brief; 2021 Apr; 35():106817. PubMed ID: 33718537
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spatial distribution and concentration of sulfur in relation to vegetation cover and soil properties on a reclaimed sulfur mine site (Southern Poland).
    Likus-Cieślik J; Pietrzykowski M; Szostak M; Szulczewski M
    Environ Monit Assess; 2017 Feb; 189(2):87. PubMed ID: 28144870
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Use of Arbuscular Mycorrhiza and Organic Amendments to Enhance Growth of Macaranga peltata (Roxb.) Müll. Arg. in Iron Ore Mine Wastelands.
    Rodrigues CR; Rodrigues BF
    Int J Phytoremediation; 2015; 17(1-6):485-92. PubMed ID: 25495939
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fine and Coarse-Scale Patterns of Vegetation Diversity on Reclaimed Surface Mine-land Over a 40-Year Chronosequence.
    Bohrer SL; Limb RF; Daigh AL; Volk JM; Wick AF
    Environ Manage; 2017 Mar; 59(3):431-439. PubMed ID: 27838768
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selective coal mine overburden treatment with topsoil and compost to optimise pasture or native vegetation establishment.
    Spargo A; Doley D
    J Environ Manage; 2016 Nov; 182():342-350. PubMed ID: 27497311
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of engineering properties for the use of leached brown coal ash in soil covers.
    Mudd GM; Chakrabarti S; Kodikara J
    J Hazard Mater; 2007 Jan; 139(3):409-12. PubMed ID: 16621267
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Soil carbon and nitrogen in 28-year-old land uses in reclaimed coal mine soils of Ohio.
    Shrestha RK; Lal R
    J Environ Qual; 2007; 36(6):1775-83. PubMed ID: 17965380
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.