These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 26524443)

  • 61. Intermittent rainstorms cause pulses of nitrogen, phosphorus, and copper in leachate from compost in bioretention systems.
    Mullane JM; Flury M; Iqbal H; Freeze PM; Hinman C; Cogger CG; Shi Z
    Sci Total Environ; 2015 Dec; 537():294-303. PubMed ID: 26282763
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Bioretention planter performance measured by lag and capture.
    Nissen KA; Borst M; Fassman-Beck E
    Hydrol Process; 2020 Dec; 34(25):5176-5184. PubMed ID: 33627939
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Investigation into the long-term stormwater pollution removal efficiency of bioretention systems.
    Lucke T; Dierkes C; Boogaard F
    Water Sci Technol; 2017 Oct; 76(7-8):2133-2139. PubMed ID: 29068342
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Green infrastructure drainage of a commercial plaza without directly connected impervious areas: a case study.
    Rujner H; Leonhardt G; Flanagan K; Marsalek J; Viklander M
    Water Sci Technol; 2022 Dec; 86(11):2777-2793. PubMed ID: 36515188
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Plant species contribution to bioretention performance under a temperate climate.
    Beral H; Dagenais D; Brisson J; Kõiv-Vainik M
    Sci Total Environ; 2023 Feb; 858(Pt 3):160122. PubMed ID: 36370788
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Measuring and modeling event-based environmental flows: An assessment of HEC-RAS 2D rain-on-grid simulations.
    Zeiger SJ; Hubbart JA
    J Environ Manage; 2021 May; 285():112125. PubMed ID: 33601266
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Predicting bioretention pollutant removal efficiency with design features: A data-driven approach.
    Wang R; Zhang X; Li MH
    J Environ Manage; 2019 Jul; 242():403-414. PubMed ID: 31059953
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Quantification of non-stormwater flow entries into storm drains using a water balance approach.
    Xu Z; Yin H; Li H
    Sci Total Environ; 2014 Jul; 487():381-8. PubMed ID: 24793842
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Stormwater biofilter treatment model (MPiRe) for selected micro-pollutants.
    Randelovic A; Zhang K; Jacimovic N; McCarthy D; Deletic A
    Water Res; 2016 Feb; 89():180-91. PubMed ID: 26650452
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Considering the effect of groundwater on bioretention using the Storm Water Management Model.
    Kim H; Mallari KJB; Baek J; Pak G; Choi HI; Yoon J
    J Environ Manage; 2019 Feb; 231():1270-1276. PubMed ID: 30602252
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Drained coastal peatlands: A potential nitrogen source to marine ecosystems under prolonged drought and heavy storm events-A microcosm experiment.
    Wang H; Richardson CJ; Ho M; Flanagan N
    Sci Total Environ; 2016 Oct; 566-567():621-626. PubMed ID: 27236627
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Improving calibration of two key parameters in Hydrologic Engineering Center hydrologic modelling system, and analysing the influence of initial loss on flood peak flows.
    Lin M; Chen X; Chen Y; Yao H
    Water Sci Technol; 2013; 68(12):2718-24. PubMed ID: 24355863
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Nitrogen removal and nitrifying and denitrifying bacteria quantification in a stormwater bioretention system.
    Chen X; Peltier E; Sturm BS; Young CB
    Water Res; 2013 Mar; 47(4):1691-700. PubMed ID: 23340015
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Green stormwater infrastructure redirects deicing salt from surface water to groundwater.
    Burgis CR; Hayes GM; Henderson DA; Zhang W; Smith JA
    Sci Total Environ; 2020 Aug; 729():138736. PubMed ID: 32361433
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Implications of Using Different Water Sources When Hydrologically Compacting Bioretention Columns.
    Stahnke CA; Poor CJ
    Water Environ Res; 2017 May; 89(5):451-455. PubMed ID: 28442005
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Assessing performance of porous pavements and bioretention cells for stormwater management in response to probable climatic changes.
    Wang M; Zhang D; Cheng Y; Tan SK
    J Environ Manage; 2019 Aug; 243():157-167. PubMed ID: 31096169
    [TBL] [Abstract][Full Text] [Related]  

  • 77. An urban runoff model designed to inform stormwater management decisions.
    Beck NG; Conley G; Kanner L; Mathias M
    J Environ Manage; 2017 May; 193():257-269. PubMed ID: 28226262
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Characterization of runoff from various urban catchments at different spatial scales in Beijing, China.
    Zhang W; Che W; Liu DK; Gan YP; Lv FF
    Water Sci Technol; 2012; 66(1):21-7. PubMed ID: 22678196
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Effects of calibration on L-THIA GIS runoff and pollutant estimation.
    Lim KJ; Engel BA; Tang Z; Muthukrishnan S; Choi J; Kim K
    J Environ Manage; 2006 Jan; 78(1):35-43. PubMed ID: 16112801
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Application of the stormwater management model to a piedmont city: a case study of Jinan City, China.
    Yu H; Huang G; Wu C
    Water Sci Technol; 2014; 70(5):858-64. PubMed ID: 25225933
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.