BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

426 related articles for article (PubMed ID: 26524446)

  • 21. Use of surfactants for the remediation of contaminated soils: a review.
    Mao X; Jiang R; Xiao W; Yu J
    J Hazard Mater; 2015 Mar; 285():419-35. PubMed ID: 25528485
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Selective adsorption of phenanthrene dissolved in surfactant solution using activated carbon.
    Ahn CK; Kim YM; Woo SH; Park JM
    Chemosphere; 2007 Nov; 69(11):1681-8. PubMed ID: 17658582
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel solubilization of phenanthrene using Winsor I microemulsion-based sodium castor oil sulfate.
    Zhao B; Zhu L; Gao Y
    J Hazard Mater; 2005 Mar; 119(1-3):205-11. PubMed ID: 15752867
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancing plant-microbe associated bioremediation of phenanthrene and pyrene contaminated soil by SDBS-Tween 80 mixed surfactants.
    Ni H; Zhou W; Zhu L
    J Environ Sci (China); 2014 May; 26(5):1071-9. PubMed ID: 25079637
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhancement of soil retention for phenanthrene in binary cationic gemini and nonionic surfactant mixtures: characterizing two-step adsorption and partition processes through experimental and modeling approaches.
    Zhao S; Huang G; An C; Wei J; Yao Y
    J Hazard Mater; 2015 Apr; 286():144-51. PubMed ID: 25576782
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Remediation of Cu/phenanthrene and combined contaminated loess soil by chemical-enhanced washing].
    Zhong JK; Zhao BW; Zhu K; Ma FF; Yang XC; Ran JY
    Huan Jing Ke Xue; 2011 Oct; 32(10):3106-12. PubMed ID: 22279931
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of clay mineral structure and surfactant nature on the adsorption capacity of surfactants by clays.
    Sánchez-Martín MJ; Dorado MC; del Hoyo C; Rodríguez-Cruz MS
    J Hazard Mater; 2008 Jan; 150(1):115-23. PubMed ID: 17532126
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of foam surfactant for foam-flushing technique in remediation of DDT-contaminated soil using data envelopment analysis method.
    Wang X; Chen J; Lv C
    Environ Sci Pollut Res Int; 2015 Feb; 22(4):2994-3003. PubMed ID: 25226831
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Micellar partitioning and its effects on Henry's law constants of chlorinated solvents in anionic and nonionic surfactant solutions.
    Zhang C; Zheng G; Nichols CM
    Environ Sci Technol; 2006 Jan; 40(1):208-14. PubMed ID: 16433353
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surfactant-enhanced remediation of organic contaminated soil and water.
    Paria S
    Adv Colloid Interface Sci; 2008 Apr; 138(1):24-58. PubMed ID: 18154747
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mathematical evaluation of activated carbon adsorption for surfactant recovery in a soil washing process.
    Ahn CK; Lee MW; Lee DS; Woo SH; Park JM
    J Hazard Mater; 2008 Dec; 160(1):13-9. PubMed ID: 18384951
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phenanthrene partitioning in sediment-surfactant-fresh/saline water systems.
    Sun H; Wu W; Wang L
    Environ Pollut; 2009; 157(8-9):2520-8. PubMed ID: 19321244
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nonionic and anionic surfactant-washing of polycyclic aromatic hydrocarbons in estuarine sediments around an industrial harbor in southern Taiwan.
    Shih YJ; Wu PC; Chen CW; Chen CF; Dong CD
    Chemosphere; 2020 Oct; 256():127044. PubMed ID: 32428741
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Solubilization capabilities of mixtures of cationic Gemini surfactant with conventional cationic, nonionic and anionic surfactants towards polycyclic aromatic hydrocarbons.
    Kabir-ud-Din ; Shafi M; Bhat PA; Dar AA
    J Hazard Mater; 2009 Aug; 167(1-3):575-81. PubMed ID: 19232468
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vapour-liquid equilibrium relationship between toluene and mixed surfactants.
    Tian S; Li Y; Mo H; Ning P
    Environ Technol; 2012; 33(13-15):1561-7. PubMed ID: 22988616
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comparative study of adsorption of an anionic and a non-ionic surfactant by soils based on physicochemical and mineralogical properties of soils.
    Rodríguez-Cruz MS; Sanchez-Martin MJ; Sanchez-Camazano M
    Chemosphere; 2005 Sep; 61(1):56-64. PubMed ID: 16157170
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Co-solubilization of polycyclic aromatic hydrocarbon mixtures in aqueous micellar systems and its correlation with FRET for enhanced remediation processes.
    Ashraf U; Lone MS; Masrat R; Shah RA; Afzal S; Chat OA; Dar AA
    Chemosphere; 2020 Mar; 242():125160. PubMed ID: 31669988
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Remediation of PAH-Contaminated Soil by Combining Surfactant Enhanced Soil Washing and Iron-Activated Persulfate Oxidation Process.
    Qiu Y; Xu M; Sun Z; Li H
    Int J Environ Res Public Health; 2019 Feb; 16(3):. PubMed ID: 30717404
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electroremediation of a natural soil polluted with phenanthrene in a pilot plant.
    López-Vizcaíno R; Alonso J; Cañizares P; León MJ; Navarro V; Rodrigo MA; Sáez C
    J Hazard Mater; 2014 Jan; 265():142-50. PubMed ID: 24361491
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Solubilization of DNAPLs by mixed surfactant: synergism and solubilization capacity.
    Zhao B; Zhu L
    J Hazard Mater; 2006 Aug; 136(3):513-9. PubMed ID: 16236435
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.