These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 26524450)

  • 1. Research on the treatment of oily wastewater by coalescence technology.
    Li C; Li M; Zhang X
    Water Sci Technol; 2015; 72(9):1588-93. PubMed ID: 26524450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of novel oil washing process using bubble potential energy.
    Kim TI; Kim YH; Han M
    Mar Pollut Bull; 2012 Nov; 64(11):2325-32. PubMed ID: 23021936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous removal of oil and grease, and heavy metals from artificial bilge water using electro-coagulation/flotation.
    Rincón GJ; La Motta EJ
    J Environ Manage; 2014 Nov; 144():42-50. PubMed ID: 24908614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of boron from ceramic industry wastewater by adsorption-flocculation mechanism using palm oil mill boiler (POMB) bottom ash and polymer.
    Chong MF; Lee KP; Chieng HJ; Syazwani Binti Ramli II
    Water Res; 2009 Jul; 43(13):3326-34. PubMed ID: 19487007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical-based processes for produced water and oily wastewater treatment: A review.
    Ghaffarian Khorram A; Fallah N; Nasernejad B; Afsham N; Esmaelzadeh M; Vatanpour V
    Chemosphere; 2023 Oct; 338():139565. PubMed ID: 37482313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Treatment of vegetable oily wastewater using an integrated microfiltration-reverse osmosis system.
    Yu X; Zhong Z; Xing W
    Water Sci Technol; 2010; 61(2):455-62. PubMed ID: 20107272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Treatment of phosphate-containing oily wastewater by coagulation and microfiltration.
    Zhang J; Sun YX; Huang ZF; Liu XQ; Meng GY
    J Environ Sci (China); 2006; 18(4):629-33. PubMed ID: 17078536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of macro-pollutants in oily wastewater obtained from soil remediation plant using electro-oxidation process.
    Zolfaghari M; Drogui P; Blais JF
    Environ Sci Pollut Res Int; 2018 Mar; 25(8):7748-7757. PubMed ID: 29290057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of cork granules as an effective sustainable material to clean-up spills of crude oil and derivatives.
    Todescato D; Hackbarth FV; Carvalho PJ; Ulson de Souza AA; Ulson de Souza SMAG; Boaventura RAR; Granato MA; Vilar VJP
    Environ Sci Pollut Res Int; 2020 Jan; 27(1):366-378. PubMed ID: 31788732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane technology for treating decanted oily wastewater from marine oil spill operations: Comparison between membrane filtration and membrane bioreactor.
    Bhattacharyya A; Liu L; Walsh M; Lee K
    Mar Pollut Bull; 2023 Sep; 194(Pt B):115397. PubMed ID: 37573669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electricity generation and wastewater treatment of oil refinery in microbial fuel cells using Pseudomonas putida.
    Majumder D; Maity JP; Tseng MJ; Nimje VR; Chen HR; Chen CC; Chang YF; Yang TC; Chen CY
    Int J Mol Sci; 2014 Sep; 15(9):16772-86. PubMed ID: 25247576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combination of granular activated carbon adsorption and deep-bed filtration as a single advanced wastewater treatment step for organic micropollutant and phosphorus removal.
    Altmann J; Rehfeld D; Träder K; Sperlich A; Jekel M
    Water Res; 2016 Apr; 92():131-9. PubMed ID: 26849316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coarse filters for pond effluent polishing: comparison of loading rates and grain sizes.
    von Sperling M; de Andrada JG; de Melo Júnior WR
    Water Sci Technol; 2007; 55(11):121-6. PubMed ID: 17591204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of Box-Behnken design for circulating flow sono-electrocoagulation for oily wastewater treatment.
    Posavcic H; Halkijevic I; Vouk D; Druskovic M
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2022; 57(8):645-655. PubMed ID: 35838490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of combined granular media with opposite wettability for demulsification of oily wastewater by microchannel filter.
    Sun Y; Liu Y; Xu B; Ji Z; Xue Z; Yuan W; Ma H; Wang H
    Chemosphere; 2023 Jan; 311(Pt 1):136812. PubMed ID: 36243079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly efficient removal of emulsified oil from oily wastewater by microfiltration carbon membranes made from phenolic resin/coal.
    Li H; Zhang B; Wu Y
    Environ Technol; 2024 Jul; 45(18):3692-3705. PubMed ID: 37326284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New trends in removing heavy metals from wastewater.
    Zhao M; Xu Y; Zhang C; Rong H; Zeng G
    Appl Microbiol Biotechnol; 2016 Aug; 100(15):6509-6518. PubMed ID: 27318819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. State of the art of produced water treatment.
    Jiménez S; Micó MM; Arnaldos M; Medina F; Contreras S
    Chemosphere; 2018 Feb; 192():186-208. PubMed ID: 29102864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Slow sand filtration of secondary clarifier effluent for wastewater reuse.
    Langenbach K; Kuschk P; Horn H; Kästner M
    Environ Sci Technol; 2009 Aug; 43(15):5896-901. PubMed ID: 19731694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review on three-dimensional electrochemical technology for the antibiotic wastewater treatment.
    Ma J; Wang X; Sun H; Tang W; Wang Q
    Environ Sci Pollut Res Int; 2023 Jun; 30(29):73150-73173. PubMed ID: 37213011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.