These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 26524454)

  • 1. Contrasting suspended covers reveal the impact of an artificial monolayer on heat transfer processes at the interfacial boundary layer.
    Pittaway P; Martínez-Alvarez V; Hancock N
    Water Sci Technol; 2015; 72(9):1621-7. PubMed ID: 26524454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of artificial monolayer application on stored water quality at the air-water interface.
    Pittaway P; Martínez-Alvarez V; Hancock N; Gallego-Elvira B
    Water Sci Technol; 2015; 72(7):1250-6. PubMed ID: 26398042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradation of artificial monolayers applied to water storages to reduce evaporative loss.
    Pittaway P; Herzig M; Stuckey N; Larsen K
    Water Sci Technol; 2015; 72(8):1334-40. PubMed ID: 26465303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Testing the effectiveness of monolayers under wind and wave conditions.
    Palada C; Schouten P; Lemckert C
    Water Sci Technol; 2012; 65(6):1137-41. PubMed ID: 22378014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heat and mass exchange processes between the surface of the human body and ambient air at various altitudes.
    Kandjov IM
    Int J Biometeorol; 1999 Jul; 43(1):38-44. PubMed ID: 10466019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The impact of a small lake on heat stress in a Mediterranean urban park: the case of Tel Aviv, Israel.
    Saaroni H; Ziv B
    Int J Biometeorol; 2003 May; 47(3):156-65. PubMed ID: 12748843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advanced modelling of the transport phenomena across horizontal clothing microclimates with natural convection.
    Mayor TS; Couto S; Psikuta A; Rossi RM
    Int J Biometeorol; 2015 Dec; 59(12):1875-89. PubMed ID: 25994799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Convective and evaporative heat transfer coefficients during drying of ivy gourd under natural and forced convection solar dryer.
    Elangovan E; Natarajan SK
    Environ Sci Pollut Res Int; 2023 Jan; 30(4):10469-10483. PubMed ID: 36074290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation on Heat Transfer and Emergency Protection of Tanks in a Tank Farm under Fire Scenario.
    Bao Y; Zhang F; Cheng J; Wang Y; Guan Y; Ren J; Jin F; Cheng Y; Xie W
    Int J Environ Res Public Health; 2023 Mar; 20(7):. PubMed ID: 37047963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Convective heat transfer measured directly with a heat flux sensor.
    Danielsson U
    J Appl Physiol (1985); 1990 Mar; 68(3):1275-81. PubMed ID: 2341350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of wind and human movement on the heat and vapour transfer properties of clothing.
    Parsons KC; Havenith G; Holmér I; Nilsson H; Malchaire J
    Ann Occup Hyg; 1999 Jul; 43(5):347-52. PubMed ID: 10481634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface-Layer Wind Shear and Momentum Transport From Clear-Sky to Cloudy Weather Regimes Over Land.
    Koning AM; Nuijens L; Bosveld FC; Siebesma AP; van Dorp PA; Jonker HJJ
    J Geophys Res Atmos; 2021 Nov; 126(21):e2021JD035087. PubMed ID: 35865264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the factors governing water vapor turbulence mixing in the convective boundary layer over land: Concept and data analysis technique using ground-based lidar measurements.
    Pal S
    Sci Total Environ; 2016 Jun; 554-555():17-25. PubMed ID: 26950615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Air movement and heat loss from sheep. I. Boundary layer insulation of a model sheep, with and without fleece.
    McArthur AJ; Monteith JL
    Proc R Soc Lond B Biol Sci; 1980 Aug; 209(1175):187-208. PubMed ID: 6107914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanofluid heat transfer under mixed convection flow in a tube for solar thermal energy applications.
    Sekhar YR; Sharma KV; Kamal S
    Environ Sci Pollut Res Int; 2016 May; 23(10):9411-7. PubMed ID: 26593731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat transfer from starlings sturnus vulgaris during flight.
    Ward S; Rayner JM; MOLler U; Jackson DM; Nachtigall W; Speakman JR
    J Exp Biol; 1999 Jun; 202 (Pt 12)():1589-602. PubMed ID: 10333506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of solar radiation and wind speed on metabolic heat production by two mammals with contrasting coat colours.
    Walsberg GE; Wolf BO
    J Exp Biol; 1995 Jul; 198(Pt 7):1499-507. PubMed ID: 7658187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Comparative analysis on meteorological condition for persistent haze cases in summer and winter in Beijing].
    Liao XN; Zhang XL; Wang YC; Liu WD; Du J; Zhao LH
    Huan Jing Ke Xue; 2014 Jun; 35(6):2031-44. PubMed ID: 25158475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal physiological ecology of Colias butterflies in flight.
    Tsuji JS; Kingsolver JG; Watt WB
    Oecologia; 1986 May; 69(2):161-170. PubMed ID: 28311353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical analysis of evaporative cooling of classic heat stroke patients.
    Alzeer AH; Wissler EH
    Int J Biometeorol; 2018 Sep; 62(9):1567-1574. PubMed ID: 29777308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.