These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

900 related articles for article (PubMed ID: 26524520)

  • 41. Structural and functional insights into the
    Zuo Z; Zolekar A; Babu K; Lin VJ; Hayatshahi HS; Rajan R; Wang YC; Liu J
    Elife; 2019 Jul; 8():. PubMed ID: 31361218
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structural basis for self-cleavage prevention by tag:anti-tag pairing complementarity in type VI Cas13 CRISPR systems.
    Wang B; Zhang T; Yin J; Yu Y; Xu W; Ding J; Patel DJ; Yang H
    Mol Cell; 2021 Mar; 81(5):1100-1115.e5. PubMed ID: 33472057
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molecular basis for the PAM expansion and fidelity enhancement of an evolved Cas9 nuclease.
    Chen W; Zhang H; Zhang Y; Wang Y; Gan J; Ji Q
    PLoS Biol; 2019 Oct; 17(10):e3000496. PubMed ID: 31603896
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The crystal structure of Cpf1 in complex with CRISPR RNA.
    Dong D; Ren K; Qiu X; Zheng J; Guo M; Guan X; Liu H; Li N; Zhang B; Yang D; Ma C; Wang S; Wu D; Ma Y; Fan S; Wang J; Gao N; Huang Z
    Nature; 2016 Apr; 532(7600):522-6. PubMed ID: 27096363
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Kinetics of the CRISPR-Cas9 effector complex assembly and the role of 3'-terminal segment of guide RNA.
    Mekler V; Minakhin L; Semenova E; Kuznedelov K; Severinov K
    Nucleic Acids Res; 2016 Apr; 44(6):2837-45. PubMed ID: 26945042
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Programmable DNA cleavage in vitro by Cas9.
    Karvelis T; Gasiunas G; Siksnys V
    Biochem Soc Trans; 2013 Dec; 41(6):1401-6. PubMed ID: 24256227
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Crystal structure of Cas9 in complex with guide RNA and target DNA.
    Nishimasu H; Ran FA; Hsu PD; Konermann S; Shehata SI; Dohmae N; Ishitani R; Zhang F; Nureki O
    Cell; 2014 Feb; 156(5):935-49. PubMed ID: 24529477
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Chimeric Guides Probe and Enhance Cas9 Biochemical Activity.
    Kartje ZJ; Barkau CL; Rohilla KJ; Ageely EA; Gagnon KT
    Biochemistry; 2018 May; 57(21):3027-3031. PubMed ID: 29746102
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evolution of CRISPR RNA recognition and processing by Cas6 endonucleases.
    Niewoehner O; Jinek M; Doudna JA
    Nucleic Acids Res; 2014 Jan; 42(2):1341-53. PubMed ID: 24150936
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structural basis for promiscuous PAM recognition in type I-E Cascade from E. coli.
    Hayes RP; Xiao Y; Ding F; van Erp PB; Rajashankar K; Bailey S; Wiedenheft B; Ke A
    Nature; 2016 Feb; 530(7591):499-503. PubMed ID: 26863189
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Single-Stranded DNA Cleavage by Divergent CRISPR-Cas9 Enzymes.
    Ma E; Harrington LB; O'Connell MR; Zhou K; Doudna JA
    Mol Cell; 2015 Nov; 60(3):398-407. PubMed ID: 26545076
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Methods for decoding Cas9 protospacer adjacent motif (PAM) sequences: A brief overview.
    Karvelis T; Gasiunas G; Siksnys V
    Methods; 2017 May; 121-122():3-8. PubMed ID: 28344037
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems.
    Fonfara I; Le Rhun A; Chylinski K; Makarova KS; LĂ©crivain AL; Bzdrenga J; Koonin EV; Charpentier E
    Nucleic Acids Res; 2014 Feb; 42(4):2577-90. PubMed ID: 24270795
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The Impact of DNA Topology and Guide Length on Target Selection by a Cytosine-Specific Cas9.
    Tsui TKM; Hand TH; Duboy EC; Li H
    ACS Synth Biol; 2017 Jun; 6(6):1103-1113. PubMed ID: 28277645
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Incorporation of bridged nucleic acids into CRISPR RNAs improves Cas9 endonuclease specificity.
    Cromwell CR; Sung K; Park J; Krysler AR; Jovel J; Kim SK; Hubbard BP
    Nat Commun; 2018 Apr; 9(1):1448. PubMed ID: 29654299
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A genome-wide analysis of Cas9 binding specificity using ChIP-seq and targeted sequence capture.
    O'Geen H; Henry IM; Bhakta MS; Meckler JF; Segal DJ
    Nucleic Acids Res; 2015 Mar; 43(6):3389-404. PubMed ID: 25712100
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structural Basis for Reduced Dynamics of Three Engineered HNH Endonuclease Lys-to-Ala Mutants for the Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-Associated 9 (CRISPR/Cas9) Enzyme.
    Wang J; Skeens E; Arantes PR; Maschietto F; Allen B; Kyro GW; Lisi GP; Palermo G; Batista VS
    Biochemistry; 2022 May; 61(9):785-794. PubMed ID: 35420793
    [TBL] [Abstract][Full Text] [Related]  

  • 58. DNA Targeting by a Minimal CRISPR RNA-Guided Cascade.
    Hochstrasser ML; Taylor DW; Kornfeld JE; Nogales E; Doudna JA
    Mol Cell; 2016 Sep; 63(5):840-51. PubMed ID: 27588603
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Real-time observation of flexible domain movements in CRISPR-Cas9.
    Osuka S; Isomura K; Kajimoto S; Komori T; Nishimasu H; Shima T; Nureki O; Uemura S
    EMBO J; 2018 May; 37(10):. PubMed ID: 29650679
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structural Basis for the Altered PAM Specificities of Engineered CRISPR-Cas9.
    Hirano S; Nishimasu H; Ishitani R; Nureki O
    Mol Cell; 2016 Mar; 61(6):886-94. PubMed ID: 26990991
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 45.