BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 26524524)

  • 1. Molecular biology: DNA repair without flipping out.
    Shin DS; Tainer JA
    Nature; 2015 Nov; 527(7577):168-9. PubMed ID: 26524524
    [No Abstract]   [Full Text] [Related]  

  • 2. The DNA glycosylase AlkD uses a non-base-flipping mechanism to excise bulky lesions.
    Mullins EA; Shi R; Parsons ZD; Yuen PK; David SS; Igarashi Y; Eichman BF
    Nature; 2015 Nov; 527(7577):254-8. PubMed ID: 26524531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective base excision repair of DNA damage by the non-base-flipping DNA glycosylase AlkC.
    Shi R; Mullins EA; Shen XX; Lay KT; Yuen PK; David SS; Rokas A; Eichman BF
    EMBO J; 2018 Jan; 37(1):63-74. PubMed ID: 29054852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Catalytic Role for C-H/π Interactions in Base Excision Repair by Bacillus cereus DNA Glycosylase AlkD.
    Parsons ZD; Bland JM; Mullins EA; Eichman BF
    J Am Chem Soc; 2016 Sep; 138(36):11485-8. PubMed ID: 27571247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An unprecedented nucleic acid capture mechanism for excision of DNA damage.
    Rubinson EH; Gowda AS; Spratt TE; Gold B; Eichman BF
    Nature; 2010 Nov; 468(7322):406-11. PubMed ID: 20927102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repair of exocyclic DNA adducts: rings of complexity.
    Hang B
    Bioessays; 2004 Nov; 26(11):1195-208. PubMed ID: 15499577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alkylpurine glycosylase D employs DNA sculpting as a strategy to extrude and excise damaged bases.
    Kossmann B; Ivanov I
    PLoS Comput Biol; 2014 Jul; 10(7):e1003704. PubMed ID: 24992034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activity of nucleotide excision repair enzymes for oxanine cross-link lesions.
    Nakano T; Katafuchi A; Terato H; Suzuki T; Van Houten B; Ide H
    Nucleic Acids Symp Ser (Oxf); 2005; (49):293-4. PubMed ID: 17150749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural insight into repair of alkylated DNA by a new superfamily of DNA glycosylases comprising HEAT-like repeats.
    Dalhus B; Helle IH; Backe PH; Alseth I; Rognes T; Bjørås M; Laerdahl JK
    Nucleic Acids Res; 2007; 35(7):2451-9. PubMed ID: 17395642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the Search Complex and Recognition Mechanism of the AlkD-DNA Glycosylase.
    Votaw KA; McCullagh M
    J Phys Chem B; 2019 Jan; 123(1):95-105. PubMed ID: 30525620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repair mechanism of DNA-protein cross-link damage in Escherichia coli.
    Nakano T; Morishita S; Terato H; Pack SP; Makino K; Ide H
    Nucleic Acids Symp Ser (Oxf); 2007; (51):213-4. PubMed ID: 18029662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid peroxidation in face of DNA damage, DNA repair and other cellular processes.
    Tudek B; Zdżalik-Bielecka D; Tudek A; Kosicki K; Fabisiewicz A; Speina E
    Free Radic Biol Med; 2017 Jun; 107():77-89. PubMed ID: 27908783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new family of proteins related to the HEAT-like repeat DNA glycosylases with affinity for branched DNA structures.
    Backe PH; Simm R; Laerdahl JK; Dalhus B; Fagerlund A; Okstad OA; Rognes T; Alseth I; Kolstø AB; Bjørås M
    J Struct Biol; 2013 Jul; 183(1):66-75. PubMed ID: 23623903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new protein superfamily includes two novel 3-methyladenine DNA glycosylases from Bacillus cereus, AlkC and AlkD.
    Alseth I; Rognes T; Lindbäck T; Solberg I; Robertsen K; Kristiansen KI; Mainieri D; Lillehagen L; Kolstø AB; Bjørås M
    Mol Microbiol; 2006 Mar; 59(5):1602-9. PubMed ID: 16468998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural biology: DNA search and rescue.
    David SS
    Nature; 2005 Mar; 434(7033):569-70. PubMed ID: 15800603
    [No Abstract]   [Full Text] [Related]  

  • 16. Target search and recognition mechanisms of glycosylase AlkD revealed by scanning FRET-FCS and Markov state models.
    Peng S; Wang X; Zhang L; He S; Zhao XS; Huang X; Chen C
    Proc Natl Acad Sci U S A; 2020 Sep; 117(36):21889-21895. PubMed ID: 32820079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles of Aag, Alkbh2, and Alkbh3 in the Repair of Carboxymethylated and Ethylated Thymidine Lesions.
    You C; Wang P; Nay SL; Wang J; Dai X; O'Connor TR; Wang Y
    ACS Chem Biol; 2016 May; 11(5):1332-8. PubMed ID: 26930515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chloroethylnitrosourea-derived ethano cytosine and adenine adducts are substrates for Escherichia coli glycosylases excising analogous etheno adducts.
    Guliaev AB; Singer B; Hang B
    DNA Repair (Amst); 2004 Oct; 3(10):1311-21. PubMed ID: 15336626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unraveling the Base Excision Repair Mechanism of Human DNA Glycosylase.
    Sadeghian K; Ochsenfeld C
    J Am Chem Soc; 2015 Aug; 137(31):9824-31. PubMed ID: 26226322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Structure and conformational dynamics of base excision repair DNA glycosylases].
    Zharkov DO
    Mol Biol (Mosk); 2007; 41(5):772-86. PubMed ID: 18240561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.