These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 26524545)

  • 1. Development of a DNA Microarray-Based Assay for the Detection of Sugar Beet Root Rot Pathogens.
    Liebe S; Christ DS; Ehricht R; Varrelmann M
    Phytopathology; 2016 Jan; 106(1):76-86. PubMed ID: 26524545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Taxonomic analysis of the microbial community in stored sugar beets using high-throughput sequencing of different marker genes.
    Liebe S; Wibberg D; Winkler A; Pühler A; Schlüter A; Varrelmann M
    FEMS Microbiol Ecol; 2016 Feb; 92(2):. PubMed ID: 26738557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbiome-driven identification of microbial indicators for postharvest diseases of sugar beets.
    Kusstatscher P; Zachow C; Harms K; Maier J; Eigner H; Berg G; Cernava T
    Microbiome; 2019 Aug; 7(1):112. PubMed ID: 31391094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incidence, Distribution, and Pathogenicity of Fungi Causing Root Rot in Idaho Long-Term Sugar Beet Storage Piles.
    Strausbaugh CA
    Plant Dis; 2018 Nov; 102(11):2296-2307. PubMed ID: 30169137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro and in vivo antagonism of actinomycetes isolated from Moroccan rhizospherical soils against Sclerotium rolfsii: a causal agent of root rot on sugar beet (Beta vulgaris L.).
    Errakhi R; Lebrihi A; Barakate M
    J Appl Microbiol; 2009 Aug; 107(2):672-81. PubMed ID: 19302305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sugar beet-associated bacterial and fungal communities show a high indigenous antagonistic potential against plant pathogens.
    Zachow C; Tilcher R; Berg G
    Microb Ecol; 2008 Jan; 55(1):119-29. PubMed ID: 18060449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Environment and Sugar Beet Genotype on Root Rot Development and Pathogen Profile During Storage.
    Liebe S; Varrelmann M
    Phytopathology; 2016 Jan; 106(1):65-75. PubMed ID: 26474333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative trait locus responsible for resistance to Aphanomyces root rot (black root) caused by Aphanomyces cochlioides Drechs. in sugar beet.
    Taguchi K; Ogata N; Kubo T; Kawasaki S; Mikami T
    Theor Appl Genet; 2009 Jan; 118(2):227-34. PubMed ID: 18813904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel Penicillium sp. Causes Rot in Stored Sugar Beet Roots in Idaho.
    Strausbaugh CA; Dugan F
    Plant Dis; 2017 Oct; 101(10):1781-1787. PubMed ID: 30676924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diagnostic application of padlock probes--multiplex detection of plant pathogens using universal microarrays.
    Szemes M; Bonants P; de Weerdt M; Baner J; Landegren U; Schoen CD
    Nucleic Acids Res; 2005 Apr; 33(8):e70. PubMed ID: 15860767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leuconostoc spp. Associated with Root Rot in Sugar Beet and Their Interaction with Rhizoctonia solani.
    Strausbaugh CA
    Phytopathology; 2016 May; 106(5):432-41. PubMed ID: 26735061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Illumina-based analysis of endophytic bacterial diversity and space-time dynamics in sugar beet on the north slope of Tianshan mountain.
    Shi Y; Yang H; Zhang T; Sun J; Lou K
    Appl Microbiol Biotechnol; 2014; 98(14):6375-85. PubMed ID: 24752839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and application of a loop-mediated isothermal amplification assay for rapid detection of Pythium helicoides.
    Takahashi R; Fukuta S; Kuroyanagi S; Miyake N; Nagai H; Kageyama K; Ishiguro Y
    FEMS Microbiol Lett; 2014 Jun; 355(1):28-35. PubMed ID: 24797345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput identification of clinical pathogenic fungi by hybridization to an oligonucleotide microarray.
    Huang A; Li JW; Shen ZQ; Wang XW; Jin M
    J Clin Microbiol; 2006 Sep; 44(9):3299-305. PubMed ID: 16954264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differentiation of eleven Fusarium spp. isolated from sugar beet, using restriction fragment analysis of a polymerase chain reaction-amplified translation elongation factor 1alpha gene fragment.
    Nitschke E; Nihlgard M; Varrelmann M
    Phytopathology; 2009 Aug; 99(8):921-9. PubMed ID: 19594311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detecting single nucleotide polymorphisms using DNA arrays for plant pathogen diagnosis.
    Lievens B; Claes L; Vanachter AC; Cammue BP; Thomma BP
    FEMS Microbiol Lett; 2006 Feb; 255(1):129-39. PubMed ID: 16436072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of Fusarium secorum, a new species causing Fusarium yellowing decline of sugar beet in north central USA.
    Secor GA; Rivera-Varas V; Christ DS; Mathew FM; Khan MF; Varrelmann M; Bolton MD
    Fungal Biol; 2014; 118(9-10):764-75. PubMed ID: 25209635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soil suppressiveness to Rhizoctonia solani and microbial diversity.
    Bakker Y; Van Loon FM; Schneider JH
    Commun Agric Appl Biol Sci; 2005; 70(3):29-33. PubMed ID: 16637155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA microarray-based detection and identification of fungal pathogens in clinical samples from neutropenic patients.
    Spiess B; Seifarth W; Hummel M; Frank O; Fabarius A; Zheng C; Mörz H; Hehlmann R; Buchheidt D
    J Clin Microbiol; 2007 Nov; 45(11):3743-53. PubMed ID: 17715373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of Rhizoctonia solani and Rhizopus stolonifer Causing Root Rot of Sugar Beet.
    Hanson LE
    Plant Dis; 2010 May; 94(5):504-509. PubMed ID: 30754477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.