These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. A facile "liquid-molding" method to fabricate PDMS microdevices with 3-dimensional channel topography. Liu X; Wang Q; Qin J; Lin B Lab Chip; 2009 May; 9(9):1200-5. PubMed ID: 19370237 [TBL] [Abstract][Full Text] [Related]
7. Engineering Tissue Barrier Models on Hydrogel Microfluidic Platforms. Vera D; García-Díaz M; Torras N; Álvarez M; Villa R; Martinez E ACS Appl Mater Interfaces; 2021 Mar; 13(12):13920-13933. PubMed ID: 33739812 [TBL] [Abstract][Full Text] [Related]
8. Rapid microfabrication of solvent-resistant biocompatible microfluidic devices. Hung LH; Lin R; Lee AP Lab Chip; 2008 Jun; 8(6):983-7. PubMed ID: 18497921 [TBL] [Abstract][Full Text] [Related]
9. Fabrication of three-dimensional microarray structures by controlling the thickness and elasticity of poly(dimethylsiloxane) membrane. Lee DH; Park JY; Lee EJ; Choi YY; Kwon GH; Kim BM; Lee SH Biomed Microdevices; 2010 Feb; 12(1):49-54. PubMed ID: 19777351 [TBL] [Abstract][Full Text] [Related]
10. On chip porous polymer membranes for integration of gastrointestinal tract epithelium with microfluidic 'body-on-a-chip' devices. Esch MB; Sung JH; Yang J; Yu C; Yu J; March JC; Shuler ML Biomed Microdevices; 2012 Oct; 14(5):895-906. PubMed ID: 22847474 [TBL] [Abstract][Full Text] [Related]
11. Control and automation of multilayered integrated microfluidic device fabrication. Kipper S; Frolov L; Guy O; Pellach M; Glick Y; Malichi A; Knisbacher BA; Barbiro-Michaely E; Avrahami D; Yavets-Chen Y; Levanon EY; Gerber D Lab Chip; 2017 Jan; 17(3):557-566. PubMed ID: 28102868 [TBL] [Abstract][Full Text] [Related]
17. Liquid polystyrene: a room-temperature photocurable soft lithography compatible pour-and-cure-type polystyrene. Nargang TM; Brockmann L; Nikolov PM; Schild D; Helmer D; Keller N; Sachsenheimer K; Wilhelm E; Pires L; Dirschka M; Kolew A; Schneider M; Worgull M; Giselbrecht S; Neumann C; Rapp BE Lab Chip; 2014 Aug; 14(15):2698-708. PubMed ID: 24887072 [TBL] [Abstract][Full Text] [Related]
18. Thiol-Ene Based Polymers as Versatile Materials for Microfluidic Devices for Life Sciences Applications. Sticker D; Geczy R; Häfeli UO; Kutter JP ACS Appl Mater Interfaces; 2020 Mar; 12(9):10080-10095. PubMed ID: 32048822 [TBL] [Abstract][Full Text] [Related]
19. The upcoming 3D-printing revolution in microfluidics. Bhattacharjee N; Urrios A; Kang S; Folch A Lab Chip; 2016 May; 16(10):1720-42. PubMed ID: 27101171 [TBL] [Abstract][Full Text] [Related]
20. 3D printing of soft lithography mold for rapid production of polydimethylsiloxane-based microfluidic devices for cell stimulation with concentration gradients. Kamei K; Mashimo Y; Koyama Y; Fockenberg C; Nakashima M; Nakajima M; Li J; Chen Y Biomed Microdevices; 2015 Apr; 17(2):36. PubMed ID: 25686903 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]