BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 26525193)

  • 1. Controlling transcription in human pluripotent stem cells using CRISPR-effectors.
    Genga RM; Kearns NA; Maehr R
    Methods; 2016 May; 101():36-42. PubMed ID: 26525193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells.
    Kearns NA; Genga RM; Enuameh MS; Garber M; Wolfe SA; Maehr R
    Development; 2014 Jan; 141(1):219-23. PubMed ID: 24346702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional Regulation with CRISPR/Cas9 Effectors in Mammalian Cells.
    Pham H; Kearns NA; Maehr R
    Methods Mol Biol; 2016; 1358():43-57. PubMed ID: 26463376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR/Cas9-Mediated Mutagenesis of Human Pluripotent Stem Cells in Defined Xeno-Free E8 Medium.
    Soh CL; Huangfu D
    Methods Mol Biol; 2017; 1498():57-78. PubMed ID: 27709569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A multiplexed gRNA piggyBac transposon system facilitates efficient induction of CRISPRi and CRISPRa in human pluripotent stem cells.
    Hazelbaker DZ; Beccard A; Angelini G; Mazzucato P; Messana A; Lam D; Eggan K; Barrett LE
    Sci Rep; 2020 Jan; 10(1):635. PubMed ID: 31959800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The iCRISPR platform for rapid genome editing in human pluripotent stem cells.
    Zhu Z; González F; Huangfu D
    Methods Enzymol; 2014; 546():215-50. PubMed ID: 25398343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using an Inducible CRISPR-dCas9-KRAB Effector System to Dissect Transcriptional Regulation in Human Embryonic Stem Cells.
    Parsi KM; Hennessy E; Kearns N; Maehr R
    Methods Mol Biol; 2017; 1507():221-233. PubMed ID: 27832543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells.
    Ihry RJ; Worringer KA; Salick MR; Frias E; Ho D; Theriault K; Kommineni S; Chen J; Sondey M; Ye C; Randhawa R; Kulkarni T; Yang Z; McAllister G; Russ C; Reece-Hoyes J; Forrester W; Hoffman GR; Dolmetsch R; Kaykas A
    Nat Med; 2018 Jul; 24(7):939-946. PubMed ID: 29892062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generating CRISPR-Cas9-Mediated Null Mutations and Screening Targeting Efficiency in Human Pluripotent Stem Cells.
    Bower OJ; McCarthy A; Lea RA; Alanis-Lobato G; Zohren J; Gerri C; Turner JMA; Niakan KK
    Curr Protoc; 2021 Aug; 1(8):e232. PubMed ID: 34432381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/dCas9 Switch Systems for Temporal Transcriptional Control.
    Gjaltema RAF; Schulz EG
    Methods Mol Biol; 2018; 1767():167-185. PubMed ID: 29524134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive Protocols for CRISPR/Cas9-based Gene Editing in Human Pluripotent Stem Cells.
    Santos DP; Kiskinis E; Eggan K; Merkle FT
    Curr Protoc Stem Cell Biol; 2016 Aug; 38():5B.6.1-5B.6.60. PubMed ID: 27532820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient CRISPR/Cas9-Mediated Versatile, Predictable, and Donor-Free Gene Knockout in Human Pluripotent Stem Cells.
    Liu Z; Hui Y; Shi L; Chen Z; Xu X; Chi L; Fan B; Fang Y; Liu Y; Ma L; Wang Y; Xiao L; Zhang Q; Jin G; Liu L; Zhang X
    Stem Cell Reports; 2016 Sep; 7(3):496-507. PubMed ID: 27594587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic Modification in Human Pluripotent Stem Cells by Homologous Recombination and CRISPR/Cas9 System.
    Xue H; Wu J; Li S; Rao MS; Liu Y
    Methods Mol Biol; 2016; 1307():173-90. PubMed ID: 24615461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR/Cas-Mediated Knockin in Human Pluripotent Stem Cells.
    Verma N; Zhu Z; Huangfu D
    Methods Mol Biol; 2017; 1513():119-140. PubMed ID: 27807834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conditional Gene Knockout in Human Cells with Inducible CRISPR/Cas9.
    Snijders KE; Cooper JD; Vallier L; Bertero A
    Methods Mol Biol; 2019; 1961():185-209. PubMed ID: 30912047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR/Cas9-Directed Genome Editing of Cultured Cells.
    Yang L; Yang JL; Byrne S; Pan J; Church GM
    Curr Protoc Mol Biol; 2014 Jul; 107():31.1.1-31.1.17. PubMed ID: 24984853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeted transcriptional modulation with type I CRISPR-Cas systems in human cells.
    Pickar-Oliver A; Black JB; Lewis MM; Mutchnick KJ; Klann TS; Gilcrest KA; Sitton MJ; Nelson CE; Barrera A; Bartelt LC; Reddy TE; Beisel CL; Barrangou R; Gersbach CA
    Nat Biotechnol; 2019 Dec; 37(12):1493-1501. PubMed ID: 31548729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR/Cas9 genome editing in human pluripotent stem cells: Harnessing human genetics in a dish.
    González F
    Dev Dyn; 2016 Jul; 245(7):788-806. PubMed ID: 27145095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Harnessing CRISPR-Cas9 for Epigenetic Engineering.
    Guerra-Resendez RS; Hilton IB
    Methods Mol Biol; 2022; 2518():237-251. PubMed ID: 35666449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of PAX7 Reporter Cells to Investigate Skeletal Myogenesis from Human Pluripotent Stem Cells.
    Xi H; Young CS; Pyle AD
    STAR Protoc; 2020 Dec; 1(3):100158. PubMed ID: 33377052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.