These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1124 related articles for article (PubMed ID: 26525451)
21. Mussel-inspired bioceramics with self-assembled Ca-P/polydopamine composite nanolayer: preparation, formation mechanism, improved cellular bioactivity and osteogenic differentiation of bone marrow stromal cells. Wu C; Han P; Liu X; Xu M; Tian T; Chang J; Xiao Y Acta Biomater; 2014 Jan; 10(1):428-38. PubMed ID: 24157695 [TBL] [Abstract][Full Text] [Related]
22. 3D-printed IFN-γ-loading calcium silicate-β-tricalcium phosphate scaffold sequentially activates M1 and M2 polarization of macrophages to promote vascularization of tissue engineering bone. Li T; Peng M; Yang Z; Zhou X; Deng Y; Jiang C; Xiao M; Wang J Acta Biomater; 2018 Apr; 71():96-107. PubMed ID: 29549051 [TBL] [Abstract][Full Text] [Related]
23. Biological response of 3D-printed Tian Y; Ma H; Yu X; Feng B; Yang Z; Zhang W; Wu C Biomed Mater; 2023 Mar; 18(3):. PubMed ID: 36898162 [TBL] [Abstract][Full Text] [Related]
24. An osteogenesis/angiogenesis-stimulation artificial ligament for anterior cruciate ligament reconstruction. Li H; Li J; Jiang J; Lv F; Chang J; Chen S; Wu C Acta Biomater; 2017 May; 54():399-410. PubMed ID: 28315493 [TBL] [Abstract][Full Text] [Related]
25. 3D plotting of highly uniform Sr Zhu H; Zhai D; Lin C; Zhang Y; Huan Z; Chang J; Wu C J Mater Chem B; 2016 Oct; 4(37):6200-6212. PubMed ID: 32263632 [TBL] [Abstract][Full Text] [Related]
26. Stimulation of osteogenic and angiogenic ability of cells on polymers by pulsed laser deposition of uniform akermanite-glass nanolayer. Wu C; Zhai D; Ma H; Li X; Zhang Y; Zhou Y; Luo Y; Wang Y; Xiao Y; Chang J Acta Biomater; 2014 Jul; 10(7):3295-306. PubMed ID: 24726444 [TBL] [Abstract][Full Text] [Related]
27. MBG-Modified β-TCP Scaffold Promotes Mesenchymal Stem Cells Adhesion and Osteogenic Differentiation via a FAK/MAPK Signaling Pathway. Liu Y; Ma Y; Zhang J; Xie Q; Wang Z; Yu S; Yuan Y; Liu C ACS Appl Mater Interfaces; 2017 Sep; 9(36):30283-30296. PubMed ID: 28820575 [TBL] [Abstract][Full Text] [Related]
28. Enhanced angiogenesis and osteogenesis in critical bone defects by the controlled release of BMP-2 and VEGF: implantation of electron beam melting-fabricated porous Ti6Al4V scaffolds incorporating growth factor-doped fibrin glue. Lv J; Xiu P; Tan J; Jia Z; Cai H; Liu Z Biomed Mater; 2015 Jun; 10(3):035013. PubMed ID: 26107105 [TBL] [Abstract][Full Text] [Related]
29. Enhanced osteogenesis of β-tricalcium phosphate reinforced silk fibroin scaffold for bone tissue biofabrication. Lee DH; Tripathy N; Shin JH; Song JE; Cha JG; Min KD; Park CH; Khang G Int J Biol Macromol; 2017 Feb; 95():14-23. PubMed ID: 27818295 [TBL] [Abstract][Full Text] [Related]
30. The in vitro and in vivo cementogenesis of CaMgSi₂O₆ bioceramic scaffolds. Zhang Y; Li S; Wu C J Biomed Mater Res A; 2014 Jan; 102(1):105-16. PubMed ID: 23596060 [TBL] [Abstract][Full Text] [Related]
31. 3D printing of mesoporous bioactive glass/silk fibroin composite scaffolds for bone tissue engineering. Du X; Wei D; Huang L; Zhu M; Zhang Y; Zhu Y Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109731. PubMed ID: 31349472 [TBL] [Abstract][Full Text] [Related]
32. Investigating the mechanical, physiochemical and osteogenic properties in gelatin-chitosan-bioactive nanoceramic composite scaffolds for bone tissue regeneration: In vitro and in vivo. Dasgupta S; Maji K; Nandi SK Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():713-728. PubMed ID: 30423758 [TBL] [Abstract][Full Text] [Related]
33. Hierarchically porous nagelschmidtite bioceramic-silk scaffolds for bone tissue engineering. Xu M; Li H; Zhai D; Chang J; Chen S; Wu C J Mater Chem B; 2015 May; 3(18):3799-3809. PubMed ID: 32262854 [TBL] [Abstract][Full Text] [Related]
34. 3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy. Liu Y; Li T; Ma H; Zhai D; Deng C; Wang J; Zhuo S; Chang J; Wu C Acta Biomater; 2018 Jun; 73():531-546. PubMed ID: 29656075 [TBL] [Abstract][Full Text] [Related]
35. Europium-doped mesoporous silica nanosphere as an immune-modulating osteogenesis/angiogenesis agent. Shi M; Xia L; Chen Z; Lv F; Zhu H; Wei F; Han S; Chang J; Xiao Y; Wu C Biomaterials; 2017 Nov; 144():176-187. PubMed ID: 28837959 [TBL] [Abstract][Full Text] [Related]
36. Mesoporous bioactive glass surface modified poly(lactic-co-glycolic acid) electrospun fibrous scaffold for bone regeneration. Chen S; Jian Z; Huang L; Xu W; Liu S; Song D; Wan Z; Vaughn A; Zhan R; Zhang C; Wu S; Hu M; Li J Int J Nanomedicine; 2015; 10():3815-27. PubMed ID: 26082632 [TBL] [Abstract][Full Text] [Related]
37. Mesoporous bioactive glass doped-poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) composite scaffolds with 3-dimensionally hierarchical pore networks for bone regeneration. Yang S; Wang J; Tang L; Ao H; Tan H; Tang T; Liu C Colloids Surf B Biointerfaces; 2014 Apr; 116():72-80. PubMed ID: 24441182 [TBL] [Abstract][Full Text] [Related]
38. Osteoimmunomodulatory properties of magnesium scaffolds coated with β-tricalcium phosphate. Chen Z; Mao X; Tan L; Friis T; Wu C; Crawford R; Xiao Y Biomaterials; 2014 Oct; 35(30):8553-65. PubMed ID: 25017094 [TBL] [Abstract][Full Text] [Related]
39. The effect of calcium phosphate composite scaffolds on the osteogenic differentiation of rabbit dental pulp stem cells. Ling LE; Feng L; Liu HC; Wang DS; Shi ZP; Wang JC; Luo W; Lv Y J Biomed Mater Res A; 2015 May; 103(5):1732-45. PubMed ID: 25131439 [TBL] [Abstract][Full Text] [Related]
40. A poly(glycerol sebacate)-coated mesoporous bioactive glass scaffold with adjustable mechanical strength, degradation rate, controlled-release and cell behavior for bone tissue engineering. Lin D; Yang K; Tang W; Liu Y; Yuan Y; Liu C Colloids Surf B Biointerfaces; 2015 Jul; 131():1-11. PubMed ID: 25935647 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]