These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 26525893)

  • 21. Characterization of microbial activities and U reduction in a shallow aquifer contaminated by uranium mill tailings.
    Elias DA; Krumholz LR; Wong D; Long PE; Suflita JM
    Microb Ecol; 2003 Jul; 46(1):83-91. PubMed ID: 12754659
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nitrogen loss through anaerobic ammonium oxidation coupled to Iron reduction from ecosystem habitats in the Taihu estuary region.
    Ding B; Chen Z; Li Z; Qin Y; Chen S
    Sci Total Environ; 2019 Apr; 662():600-606. PubMed ID: 30699380
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioreduction of uranium in a contaminated soil column.
    Gu B; Wu WM; Ginder-Vogel MA; Yan H; Fields MW; Zhou J; Fendorf S; Criddle CS; Jardine PM
    Environ Sci Technol; 2005 Jul; 39(13):4841-7. PubMed ID: 16053082
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Uranium immobilization in an iron-rich rhizosphere of a native wetland plant from the Savannah River Site under reducing conditions.
    Chang HS; Buettner SW; Seaman JC; Jaffé PR; van Groos PG; Li D; Peacock AD; Scheckel KG; Kaplan DI
    Environ Sci Technol; 2014 Aug; 48(16):9270-8. PubMed ID: 25051143
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dissimilatory reduction of Cr(VI), Fe(III), and U(VI) by Cellulomonas isolates.
    Sani RK; Peyton BM; Smith WA; Apel WA; Petersen JN
    Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):192-9. PubMed ID: 12382063
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of Leifsonia sp. on U(VI) removal efficiency and the Fe-U precipitates by zero-valent iron.
    Xie S; Xiao X; Tan W; Lv J; Deng Q; Fang Q
    Environ Sci Pollut Res Int; 2020 Feb; 27(5):5584-5594. PubMed ID: 31853852
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evidence for the occurrence of Feammox coupled with nitrate-dependent Fe(II) oxidation in natural enrichment cultures.
    Wang W; Ding B; Hu Y; Zhang H; He Y; She Y; Li Z
    Chemosphere; 2022 Sep; 303(Pt 1):134903. PubMed ID: 35551943
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Abiotic process for Fe(II) oxidation and green rust mineralization driven by a heterotrophic nitrate reducing bacteria (Klebsiella mobilis).
    Etique M; Jorand FP; Zegeye A; Grégoire B; Despas C; Ruby C
    Environ Sci Technol; 2014 Apr; 48(7):3742-51. PubMed ID: 24605878
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Promoting nitrogen removal during Fe(III) reduction coupled to anaerobic ammonium oxidation (Feammox) by adding anthraquinone-2,6-disulfonate (AQDS).
    Yang Y; Peng H; Niu J; Zhao Z; Zhang Y
    Environ Pollut; 2019 Apr; 247():973-979. PubMed ID: 30823352
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oxidative remobilization of biogenic uranium(IV) precipitates: effects of iron(II) and pH.
    Zhong L; Liu C; Zachara JM; Kennedy DW; Szecsody JE; Wood B
    J Environ Qual; 2005; 34(5):1763-71. PubMed ID: 16151228
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microbial reduction of U(VI) under alkaline conditions: implications for radioactive waste geodisposal.
    Williamson AJ; Morris K; Law GT; Rizoulis A; Charnock JM; Lloyd JR
    Environ Sci Technol; 2014 Nov; 48(22):13549-56. PubMed ID: 25231875
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reoxidation of bioreduced uranium under reducing conditions.
    Wan J; Tokunaga TK; Brodie E; Wang Z; Zheng Z; Herman D; Hazen TC; Firestone MK; Sutton SR
    Environ Sci Technol; 2005 Aug; 39(16):6162-9. PubMed ID: 16173577
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biodegradation of PFOA in microbial electrolysis cells by Acidimicrobiaceae sp. strain A6.
    Ruiz-Urigüen M; Shuai W; Huang S; Jaffé PR
    Chemosphere; 2022 Apr; 292():133506. PubMed ID: 34995627
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioreduction of U(VI) and stability of immobilized uranium under suboxic conditions.
    Hu N; Ding DX; Li SM; Tan X; Li GY; Wang YD; Xu F
    J Environ Radioact; 2016 Apr; 154():60-7. PubMed ID: 26854555
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantifying constraints imposed by calcium and iron on bacterial reduction of uranium(VI).
    Stewart BD; Neiss J; Fendorf S
    J Environ Qual; 2007; 36(2):363-72. PubMed ID: 17255623
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineering and kinetic aspects of bacterial uranium reduction for the remediation of uranium contaminated environments.
    Lakaniemi AM; Douglas GB; Kaksonen AH
    J Hazard Mater; 2019 Jun; 371():198-212. PubMed ID: 30851673
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Uranium Reduction by Fe(II) in the Presence of Montmorillonite and Nontronite.
    Tsarev S; Waite TD; Collins RN
    Environ Sci Technol; 2016 Aug; 50(15):8223-30. PubMed ID: 27379383
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Raoultella sp. SM1, a novel iron-reducing and uranium-precipitating strain.
    Sklodowska A; Mielnicki S; Drewniak L
    Chemosphere; 2018 Mar; 195():722-726. PubMed ID: 29289017
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nitrogen loss from anaerobic ammonium oxidation coupled to Iron(III) reduction in a riparian zone.
    Ding B; Li Z; Qin Y
    Environ Pollut; 2017 Dec; 231(Pt 1):379-386. PubMed ID: 28818813
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of bicarbonate, sulfate, and electron donors on biological reduction of uranium and microbial community composition.
    Luo W; Wu WM; Yan T; Criddle CS; Jardine PM; Zhou J; Gu B
    Appl Microbiol Biotechnol; 2007 Dec; 77(3):713-21. PubMed ID: 17874092
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.