These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

686 related articles for article (PubMed ID: 26525969)

  • 1. Quantification of parameters influencing methane generation due to biodegradation of municipal solid waste in landfills and laboratory experiments.
    Fei X; Zekkos D; Raskin L
    Waste Manag; 2016 Sep; 55():276-87. PubMed ID: 26525969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating methane emissions from landfills based on rainfall, ambient temperature, and waste composition: The CLEEN model.
    Karanjekar RV; Bhatt A; Altouqui S; Jangikhatoonabad N; Durai V; Sattler ML; Hossain MD; Chen V
    Waste Manag; 2015 Dec; 46():389-98. PubMed ID: 26346020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of as-discarded methane potential in residential and commercial municipal solid waste.
    Chickering GW; Krause MJ; Townsend TG
    Waste Manag; 2018 Jun; 76():82-89. PubMed ID: 29567267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of a landfill gas collection shutdown based on an adapted first-order decay model.
    Lagos DA; Héroux M; Gosselin R; Cabral AR
    Waste Manag; 2017 May; 63():238-245. PubMed ID: 27544724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation and application of site-specific data to revise the first-order decay model for estimating landfill gas generation and emissions at Danish landfills.
    Mou Z; Scheutz C; Kjeldsen P
    J Air Waste Manag Assoc; 2015 Jun; 65(6):686-98. PubMed ID: 25976482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of optimal model parameters for prediction of methane generation from selected U.S. landfills.
    Sun W; Wang X; DeCarolis JF; Barlaz MA
    Waste Manag; 2019 May; 91():120-127. PubMed ID: 31203933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of correction factors for landfill gas emission model suiting Indian condition to predict methane emission from landfills.
    Sil A; Kumar S; Wong JW
    Bioresour Technol; 2014 Sep; 168():97-9. PubMed ID: 24685512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decomposition and carbon storage of hardwood and softwood branches in laboratory-scale landfills.
    Wang X; Barlaz MA
    Sci Total Environ; 2016 Jul; 557-558():355-62. PubMed ID: 27016683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating the biochemical methane potential (BMP) of low-organic waste at Danish landfills.
    Mou Z; Scheutz C; Kjeldsen P
    Waste Manag; 2014 Nov; 34(11):2251-9. PubMed ID: 25106120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Translating landfill methane generation parameters among first-order decay models.
    Krause MJ; Chickering GW; Townsend TG
    J Air Waste Manag Assoc; 2016 Nov; 66(11):1084-1097. PubMed ID: 27332778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compositional and physicochemical changes in waste materials and biogas production across 7 landfill sites in UK.
    Frank RR; Cipullo S; Garcia J; Davies S; Wagland ST; Villa R; Trois C; Coulon F
    Waste Manag; 2017 May; 63():11-17. PubMed ID: 27577751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methane emissions from a landfill in north-east India: Performance of various landfill gas emission models.
    Gollapalli M; Kota SH
    Environ Pollut; 2018 Mar; 234():174-180. PubMed ID: 29175479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stable isotope signatures for characterising the biological stability of landfilled municipal solid waste.
    Wimmer B; Hrad M; Huber-Humer M; Watzinger A; Wyhlidal S; Reichenauer TG
    Waste Manag; 2013 Oct; 33(10):2083-90. PubMed ID: 23540355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of uncertainty in estimation of methane collection from select U.S. landfills.
    Wang X; Nagpure AS; DeCarolis JF; Barlaz MA
    Environ Sci Technol; 2015 Feb; 49(3):1545-51. PubMed ID: 25604252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of methane production from shredder waste in landfills: The influence of temperature, moisture and metals.
    Fathi Aghdam E; Scheutz C; Kjeldsen P
    Waste Manag; 2017 May; 63():226-237. PubMed ID: 27912989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scaling up laboratory column testing results to predict coupled methane generation and biological settlement in full-scale municipal solid waste landfills.
    He H; Fei X
    Waste Manag; 2020 Sep; 115():25-35. PubMed ID: 32717549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methods for determining the methane generation potential and methane generation rate constant for the FOD model: a review.
    Park JK; Chong YG; Tameda K; Lee NH
    Waste Manag Res; 2018 Mar; 36(3):200-220. PubMed ID: 29415628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating the methane generation rate constant (k value) of low-organic waste at Danish landfills.
    Mou Z; Scheutz C; Kjeldsen P
    Waste Manag; 2015 Jan; 35():170-6. PubMed ID: 25453319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards developing a representative biochemical methane potential (BMP) assay for landfilled municipal solid waste - A review.
    Pearse LF; Hettiaratchi JP; Kumar S
    Bioresour Technol; 2018 Apr; 254():312-324. PubMed ID: 29395741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of first order decay gas generation model parameters for landfills located in cold semi-arid climates.
    Vu HL; Ng KTW; Richter A
    Waste Manag; 2017 Nov; 69():315-324. PubMed ID: 28823700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.