These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 26526695)

  • 1. Large-Scale Drug Screens Support Precision Medicine.
    Gray JW; Mills GB
    Cancer Discov; 2015 Nov; 5(11):1130-2. PubMed ID: 26526695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid identification and validation of novel targeted approaches for Glioblastoma: A combined ex vivo-in vivo pharmaco-omic model.
    Daher A; de Groot J
    Exp Neurol; 2018 Jan; 299(Pt B):281-288. PubMed ID: 28923369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multitask learning improves prediction of cancer drug sensitivity.
    Yuan H; Paskov I; Paskov H; González AJ; Leslie CS
    Sci Rep; 2016 Aug; 6():31619. PubMed ID: 27550087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New tools for old drugs: Functional genetic screens to optimize current chemotherapy.
    Gerhards NM; Rottenberg S
    Drug Resist Updat; 2018 Jan; 36():30-46. PubMed ID: 29499836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a precision medicine pipeline to identify personalized treatments for colorectal cancer.
    Altunel E; Roghani RS; Chen KY; Kim SY; McCall S; Ware KE; Shen X; Somarelli JA; Hsu DS
    BMC Cancer; 2020 Jun; 20(1):592. PubMed ID: 32580713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytotoxic Profiling of Annotated and Diverse Chemical Libraries Using Quantitative High-Throughput Screening.
    Lee OW; Austin S; Gamma M; Cheff DM; Lee TD; Wilson KM; Johnson J; Travers J; Braisted JC; Guha R; Klumpp-Thomas C; Shen M; Hall MD
    SLAS Discov; 2020 Jan; 25(1):9-20. PubMed ID: 31498718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational identification of multi-omic correlates of anticancer therapeutic response.
    Stetson LC; Pearl T; Chen Y; Barnholtz-Sloan JS
    BMC Genomics; 2014; 15 Suppl 7(Suppl 7):S2. PubMed ID: 25573145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precision multidimensional assay for high-throughput microRNA drug discovery.
    Haefliger B; Prochazka L; Angelici B; Benenson Y
    Nat Commun; 2016 Feb; 7():10709. PubMed ID: 26880188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cancer Drug Development Using Drosophila as an in vivo Tool: From Bedside to Bench and Back.
    Yadav AK; Srikrishna S; Gupta SC
    Trends Pharmacol Sci; 2016 Sep; 37(9):789-806. PubMed ID: 27298020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Personalizing pancreatic cancer organoids with hPSCs.
    Zhang HC; Kuo CJ
    Nat Med; 2015 Nov; 21(11):1249-51. PubMed ID: 26540385
    [No Abstract]   [Full Text] [Related]  

  • 11. High-throughput cell-based screening of 4910 known drugs and drug-like small molecules identifies disulfiram as an inhibitor of prostate cancer cell growth.
    Iljin K; Ketola K; Vainio P; Halonen P; Kohonen P; Fey V; Grafström RC; Perälä M; Kallioniemi O
    Clin Cancer Res; 2009 Oct; 15(19):6070-8. PubMed ID: 19789329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precision Cancer Medicine in the Acoustic Dispensing Era: Ex Vivo Primary Cell Drug Sensitivity Testing.
    Kulesskiy E; Saarela J; Turunen L; Wennerberg K
    J Lab Autom; 2016 Feb; 21(1):27-36. PubMed ID: 26721820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unlocking the Potential of High-Throughput Drug Combination Assays Using Acoustic Dispensing.
    Chan GK; Wilson S; Schmidt S; Moffat JG
    J Lab Autom; 2016 Feb; 21(1):125-32. PubMed ID: 26160862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying Risk Pathway Crosstalk Mediated by miRNA to Screen Precision drugs for Breast Cancer Patients.
    Xu Y; Lin S; Zhao H; Wang J; Zhang C; Dong Q; Hu C; Desi S; Wang L; Xu Y
    Genes (Basel); 2019 Aug; 10(9):. PubMed ID: 31466383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High content screening of defined chemical libraries using normal and glioma-derived neural stem cell lines.
    Danovi D; Folarin AA; Baranowski B; Pollard SM
    Methods Enzymol; 2012; 506():311-29. PubMed ID: 22341231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The gender of cell lines matters when screening for novel anti-cancer drugs.
    Nunes LM; Robles-Escajeda E; Santiago-Vazquez Y; Ortega NM; Lema C; Muro A; Almodovar G; Das U; Das S; Dimmock JR; Aguilera RJ; Varela-Ramirez A
    AAPS J; 2014 Jul; 16(4):872-4. PubMed ID: 24875051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drug sensitivity testing platforms for gastric cancer diagnostics.
    Lau V; Wong AL; Ng C; Mok Y; Lakshmanan M; Yan B
    J Clin Pathol; 2016 Feb; 69(2):93-6. PubMed ID: 26567318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predictive Value of Ex Vivo Chemosensitivity Assays for Individualized Cancer Chemotherapy: A Meta-Analysis.
    Blom K; Nygren P; Larsson R; Andersson CR
    SLAS Technol; 2017 Jun; 22(3):306-314. PubMed ID: 28378608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing reproducibility in cancer drug screening: how do we move forward?
    Hatzis C; Bedard PL; Birkbak NJ; Beck AH; Aerts HJ; Stem DF; Shi L; Clarke R; Quackenbush J; Haibe-Kains B
    Cancer Res; 2014 Aug; 74(15):4016-23. PubMed ID: 25015668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. More than fishing for a cure: The promises and pitfalls of high throughput cancer cell line screens.
    Ling A; Gruener RF; Fessler J; Huang RS
    Pharmacol Ther; 2018 Nov; 191():178-189. PubMed ID: 29953899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.