These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
323 related articles for article (PubMed ID: 26526833)
1. Recent Advances of Poly(ether-ether) and Poly(ether-ester) Block Copolymers in Biomedical Applications. He ZY; Shi K; Wei YQ; Qian ZY Curr Drug Metab; 2016; 17(2):168-86. PubMed ID: 26526833 [TBL] [Abstract][Full Text] [Related]
2. Enzymatic PEGylated Poly(lactone-co-β-amino ester) Nanoparticles as Biodegradable, Biocompatible and Stable Vectors for Gene Delivery. Chen Y; Li Y; Gao J; Cao Z; Jiang Q; Liu J; Jiang Z ACS Appl Mater Interfaces; 2016 Jan; 8(1):490-501. PubMed ID: 26673948 [TBL] [Abstract][Full Text] [Related]
3. Biodegradable poly(ether-ester) multiblock copolymers for controlled release applications. van Dijkhuizen-Radersma R; Roosma JR; Kaim P; Métairie S; Péters FL; de Wijn J; Zijlstra PG; de Groot K; Bezemer JM J Biomed Mater Res A; 2003 Dec; 67(4):1294-304. PubMed ID: 14624516 [TBL] [Abstract][Full Text] [Related]
4. Biodegradable poly(ether ester urethane)urea elastomers based on poly(ether ester) triblock copolymers and putrescine: synthesis, characterization and cytocompatibility. Guan J; Sacks MS; Beckman EJ; Wagner WR Biomaterials; 2004 Jan; 25(1):85-96. PubMed ID: 14580912 [TBL] [Abstract][Full Text] [Related]
5. Biodegradable poly(epsilon-caprolactone)-poly(ethylene glycol) copolymers as drug delivery system. Wei X; Gong C; Gou M; Fu S; Guo Q; Shi S; Luo F; Guo G; Qiu L; Qian Z Int J Pharm; 2009 Oct; 381(1):1-18. PubMed ID: 19664700 [TBL] [Abstract][Full Text] [Related]
6. Biodegradable hyperbranched amphiphilic polyurethane multiblock copolymers consisting of poly(propylene glycol), poly(ethylene glycol), and polycaprolactone as in situ thermogels. Li Z; Zhang Z; Liu KL; Ni X; Li J Biomacromolecules; 2012 Dec; 13(12):3977-89. PubMed ID: 23167676 [TBL] [Abstract][Full Text] [Related]
7. Thermoresponsive block copolymers of poly(ethylene glycol) and polyphosphoester: thermo-induced self-assembly, biocompatibility, and hydrolytic degradation. Wang YC; Tang LY; Li Y; Wang J Biomacromolecules; 2009 Jan; 10(1):66-73. PubMed ID: 19133835 [TBL] [Abstract][Full Text] [Related]
8. Poly(lactic acid)-poly(ethylene oxide) block copolymers: new directions in self-assembly and biomedical applications. Saffer EM; Tew GN; Bhatia SR Curr Med Chem; 2011; 18(36):5676-86. PubMed ID: 22172072 [TBL] [Abstract][Full Text] [Related]
9. Recent advances in synthetic bioelastomers. Shi R; Chen D; Liu Q; Wu Y; Xu X; Zhang L; Tian W Int J Mol Sci; 2009 Nov; 10(10):4223-4256. PubMed ID: 20057942 [TBL] [Abstract][Full Text] [Related]
10. New Linear and Star-Shaped Thermogelling Poly([R]-3-hydroxybutyrate) Copolymers. Barouti G; Liow SS; Dou Q; Ye H; Orione C; Guillaume SM; Loh XJ Chemistry; 2016 Jul; 22(30):10501-12. PubMed ID: 27345491 [TBL] [Abstract][Full Text] [Related]
11. Novel ether-linkages containing aliphatic copolyesters of poly(butylene 1,4-cyclohexanedicarboxylate) as promising candidates for biomedical applications. Gigli M; Lotti N; Vercellino M; Visai L; Munari A Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():86-97. PubMed ID: 24268237 [TBL] [Abstract][Full Text] [Related]
12. New biodegradable amphiphilic block copolymers of epsilon-caprolactone and delta-valerolactone catalyzed by novel aluminum metal complexes. II. Micellization and solution to gel transition. Yang J; Jia L; Hao Q; Li Y; Li Q; Fang Q; Cao A Macromol Biosci; 2005 Sep; 5(9):896-903. PubMed ID: 16134088 [TBL] [Abstract][Full Text] [Related]
13. Investigation of cationized triblock and diblock poly(ε-caprolactone)-co-poly(ethylene glycol) copolymers for oral delivery of enoxaparin: In vitro approach. Charoongchit P; Suksiriworapong J; Mao S; Sapin-Minet A; Maincent P; Junyaprasert VB Acta Biomater; 2017 Oct; 61():180-192. PubMed ID: 28782723 [TBL] [Abstract][Full Text] [Related]
15. Synthesis and characterization of six-arm star poly(delta-valerolactone)-block-methoxy poly(ethylene glycol) copolymers. Zeng F; Lee H; Chidiac M; Allen C Biomacromolecules; 2005; 6(4):2140-9. PubMed ID: 16004456 [TBL] [Abstract][Full Text] [Related]
16. Biodegradable poly(D,L-lactic acid)-poly(ethylene glycol)-monomethyl ether diblock copolymers: structures and surface properties relevant to their use as biomaterials. Lucke A; Tessmar J; Schnell E; Schmeer G; Göpferich A Biomaterials; 2000 Dec; 21(23):2361-70. PubMed ID: 11055283 [TBL] [Abstract][Full Text] [Related]
17. Amphiphilic poly(ether ester amide) multiblock copolymers as biodegradable matrices for the controlled release of proteins. Bezemer JM; Oude Weme P; Grijpma DW; Dijkstra PJ; van Blitterswijk CA; Feijen J J Biomed Mater Res; 2000 Oct; 52(1):8-17. PubMed ID: 10906669 [TBL] [Abstract][Full Text] [Related]
18. Preparation of magnetic microspheres based on poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) copolymers by modified solvent diffusion method. Men K; Zeng S; Gou M; Guo G; Gu YC; Luo F; Zhao X; Wei Y; Qian Z J Biomed Nanotechnol; 2010 Jun; 6(3):287-92. PubMed ID: 21179946 [TBL] [Abstract][Full Text] [Related]
19. The characterization of paclitaxel-loaded microspheres manufactured from blends of poly(lactic-co-glycolic acid) (PLGA) and low molecular weight diblock copolymers. Jackson JK; Hung T; Letchford K; Burt HM Int J Pharm; 2007 Sep; 342(1-2):6-17. PubMed ID: 17555895 [TBL] [Abstract][Full Text] [Related]
20. Microspheres made of poly(epsilon-caprolactone)-based amphiphilic copolymers: potential in sustained delivery of proteins. Quaglia F; Ostacolo L; Nese G; De Rosa G; La Rotonda MI; Palumbo R; Maglio G Macromol Biosci; 2005 Oct; 5(10):945-54. PubMed ID: 16208680 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]