These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 26527620)

  • 21. Nucleotide-level linkage of transcriptional elongation and polyadenylation.
    Geisberg JV; Moqtaderi Z; Fong N; Erickson B; Bentley DL; Struhl K
    Elife; 2022 Nov; 11():. PubMed ID: 36421680
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Elongation rate of RNA polymerase II affects pausing patterns across 3' UTRs.
    Khitun A; Brion C; Moqtaderi Z; Geisberg JV; Churchman LS; Struhl K
    J Biol Chem; 2023 Nov; 299(11):105289. PubMed ID: 37748648
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crystal structure of the human symplekin-Ssu72-CTD phosphopeptide complex.
    Xiang K; Nagaike T; Xiang S; Kilic T; Beh MM; Manley JL; Tong L
    Nature; 2010 Oct; 467(7316):729-33. PubMed ID: 20861839
    [TBL] [Abstract][Full Text] [Related]  

  • 24. RNA polymerase II mutations conferring defects in poly(A) site cleavage and termination in Saccharomyces cerevisiae.
    Kubicek CE; Chisholm RD; Takayama S; Hawley DK
    G3 (Bethesda); 2013 Feb; 3(2):167-80. PubMed ID: 23390594
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The two steps of poly(A)-dependent termination, pausing and release, can be uncoupled by truncation of the RNA polymerase II carboxyl-terminal repeat domain.
    Park NJ; Tsao DC; Martinson HG
    Mol Cell Biol; 2004 May; 24(10):4092-103. PubMed ID: 15121832
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cleavage factor Im is a key regulator of 3' UTR length.
    Gruber AR; Martin G; Keller W; Zavolan M
    RNA Biol; 2012 Dec; 9(12):1405-12. PubMed ID: 23187700
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Poly(A) signals located near the 5' end of genes are silenced by a general mechanism that prevents premature 3'-end processing.
    Guo J; Garrett M; Micklem G; Brogna S
    Mol Cell Biol; 2011 Feb; 31(4):639-51. PubMed ID: 21135120
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Separable functions of the fission yeast Spt5 carboxyl-terminal domain (CTD) in capping enzyme binding and transcription elongation overlap with those of the RNA polymerase II CTD.
    Schneider S; Pei Y; Shuman S; Schwer B
    Mol Cell Biol; 2010 May; 30(10):2353-64. PubMed ID: 20231361
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Termination and pausing of RNA polymerase II downstream of yeast polyadenylation sites.
    Hyman LE; Moore CL
    Mol Cell Biol; 1993 Sep; 13(9):5159-67. PubMed ID: 8355675
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transcription elongation rate affects nascent histone pre-mRNA folding and 3' end processing.
    Saldi T; Fong N; Bentley DL
    Genes Dev; 2018 Feb; 32(3-4):297-308. PubMed ID: 29483154
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3' end processing.
    Ahn SH; Kim M; Buratowski S
    Mol Cell; 2004 Jan; 13(1):67-76. PubMed ID: 14731395
    [TBL] [Abstract][Full Text] [Related]  

  • 32. RNAP II CTD phosphorylated on threonine-4 is required for histone mRNA 3' end processing.
    Hsin JP; Sheth A; Manley JL
    Science; 2011 Nov; 334(6056):683-6. PubMed ID: 22053051
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional interaction of BRCA1-associated BARD1 with polyadenylation factor CstF-50.
    Kleiman FE; Manley JL
    Science; 1999 Sep; 285(5433):1576-9. PubMed ID: 10477523
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cooperative interaction of transcription termination factors with the RNA polymerase II C-terminal domain.
    Lunde BM; Reichow SL; Kim M; Suh H; Leeper TC; Yang F; Mutschler H; Buratowski S; Meinhart A; Varani G
    Nat Struct Mol Biol; 2010 Oct; 17(10):1195-201. PubMed ID: 20818393
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Increase in the 64-kDa subunit of the polyadenylation/cleavage stimulatory factor during the G0 to S phase transition.
    Martincic K; Campbell R; Edwalds-Gilbert G; Souan L; Lotze MT; Milcarek C
    Proc Natl Acad Sci U S A; 1998 Sep; 95(19):11095-100. PubMed ID: 9736695
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Polyadenylation site selection: linking transcription and RNA processing via a conserved carboxy-terminal domain (CTD)-interacting protein.
    Larochelle M; Hunyadkürti J; Bachand F
    Curr Genet; 2017 May; 63(2):195-199. PubMed ID: 27582274
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Key features of the interaction between Pcf11 CID and RNA polymerase II CTD.
    Noble CG; Hollingworth D; Martin SR; Ennis-Adeniran V; Smerdon SJ; Kelly G; Taylor IA; Ramos A
    Nat Struct Mol Biol; 2005 Feb; 12(2):144-51. PubMed ID: 15665873
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Splicing inhibition decreases phosphorylation level of Ser2 in Pol II CTD.
    Koga M; Hayashi M; Kaida D
    Nucleic Acids Res; 2015 Sep; 43(17):8258-67. PubMed ID: 26202968
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The polyadenylation factor CstF-64 regulates alternative processing of IgM heavy chain pre-mRNA during B cell differentiation.
    Takagaki Y; Seipelt RL; Peterson ML; Manley JL
    Cell; 1996 Nov; 87(5):941-52. PubMed ID: 8945520
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Knock-down of 25 kDa subunit of cleavage factor Im in Hela cells alters alternative polyadenylation within 3'-UTRs.
    Kubo T; Wada T; Yamaguchi Y; Shimizu A; Handa H
    Nucleic Acids Res; 2006; 34(21):6264-71. PubMed ID: 17098938
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.