These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
283 related articles for article (PubMed ID: 26527620)
41. RNA polymerase II pausing downstream of core histone genes is different from genes producing polyadenylated transcripts. Anamika K; Gyenis À; Poidevin L; Poch O; Tora L PLoS One; 2012; 7(6):e38769. PubMed ID: 22701709 [TBL] [Abstract][Full Text] [Related]
42. Effect of CFIm25 knockout on RNA polymerase II transcription. Tellier M; Hardy JG; Norbury CJ; Murphy S BMC Res Notes; 2018 Dec; 11(1):894. PubMed ID: 30547832 [TBL] [Abstract][Full Text] [Related]
43. RNA polymerase II carboxy-terminal domain phosphorylation is required for cotranscriptional pre-mRNA splicing and 3'-end formation. Bird G; Zorio DA; Bentley DL Mol Cell Biol; 2004 Oct; 24(20):8963-9. PubMed ID: 15456870 [TBL] [Abstract][Full Text] [Related]
44. Implications of polyadenylation in health and disease. Curinha A; Oliveira Braz S; Pereira-Castro I; Cruz A; Moreira A Nucleus; 2014; 5(6):508-19. PubMed ID: 25484187 [TBL] [Abstract][Full Text] [Related]
45. Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Komarnitsky P; Cho EJ; Buratowski S Genes Dev; 2000 Oct; 14(19):2452-60. PubMed ID: 11018013 [TBL] [Abstract][Full Text] [Related]
46. Pcf11 is a termination factor in Drosophila that dismantles the elongation complex by bridging the CTD of RNA polymerase II to the nascent transcript. Zhang Z; Gilmour DS Mol Cell; 2006 Jan; 21(1):65-74. PubMed ID: 16387654 [TBL] [Abstract][Full Text] [Related]
47. Stimulation of RNA Polymerase II ubiquitination and degradation by yeast mRNA 3'-end processing factors is a conserved DNA damage response in eukaryotes. Kuehner JN; Kaufman JW; Moore C DNA Repair (Amst); 2017 Sep; 57():151-160. PubMed ID: 28783563 [TBL] [Abstract][Full Text] [Related]
48. Mammalian Ssu72 phosphatase preferentially considers tissue-specific actively transcribed gene expression by regulating RNA Pol II transcription. Kim HS; Jeon Y; Jang YO; Lee H; Shin Y; Lee CW Theranostics; 2022; 12(1):186-206. PubMed ID: 34987641 [TBL] [Abstract][Full Text] [Related]
49. Ipa1 Is an RNA Polymerase II Elongation Factor that Facilitates Termination by Maintaining Levels of the Poly(A) Site Endonuclease Ysh1. Pearson EL; Graber JH; Lee SD; Naggert KS; Moore CL Cell Rep; 2019 Feb; 26(7):1919-1933.e5. PubMed ID: 30759400 [TBL] [Abstract][Full Text] [Related]
50. Yeast cap binding complex impedes recruitment of cleavage factor IA to weak termination sites. Wong CM; Qiu H; Hu C; Dong J; Hinnebusch AG Mol Cell Biol; 2007 Sep; 27(18):6520-31. PubMed ID: 17636014 [TBL] [Abstract][Full Text] [Related]
51. A structural perspective of CTD function. Meinhart A; Kamenski T; Hoeppner S; Baumli S; Cramer P Genes Dev; 2005 Jun; 19(12):1401-15. PubMed ID: 15964991 [TBL] [Abstract][Full Text] [Related]
52. Ribozyme cleavage reveals connections between mRNA release from the site of transcription and pre-mRNA processing. Bird G; Fong N; Gatlin JC; Farabaugh S; Bentley DL Mol Cell; 2005 Dec; 20(5):747-58. PubMed ID: 16337598 [TBL] [Abstract][Full Text] [Related]
53. Alternative polyadenylation coupled to transcription initiation: Insights from ELAV-mediated 3' UTR extension. Hilgers V RNA Biol; 2015; 12(9):918-21. PubMed ID: 26158379 [TBL] [Abstract][Full Text] [Related]
54. Reconstitution of 3' end processing of mammalian pre-mRNA reveals a central role of RBBP6. Schmidt M; Kluge F; Sandmeir F; Kühn U; Schäfer P; Tüting C; Ihling C; Conti E; Wahle E Genes Dev; 2022 Feb; 36(3-4):195-209. PubMed ID: 35177537 [TBL] [Abstract][Full Text] [Related]
55. B-cell and plasma-cell splicing differences: a potential role in regulated immunoglobulin RNA processing. Bruce SR; Dingle RW; Peterson ML RNA; 2003 Oct; 9(10):1264-73. PubMed ID: 13130140 [TBL] [Abstract][Full Text] [Related]
56. The transcriptional elongation rate regulates alternative polyadenylation in yeast. Geisberg JV; Moqtaderi Z; Struhl K Elife; 2020 Aug; 9():. PubMed ID: 32845240 [TBL] [Abstract][Full Text] [Related]
57. Genome-wide analysis of pre-mRNA 3' end processing reveals a decisive role of human cleavage factor I in the regulation of 3' UTR length. Martin G; Gruber AR; Keller W; Zavolan M Cell Rep; 2012 Jun; 1(6):753-63. PubMed ID: 22813749 [TBL] [Abstract][Full Text] [Related]
58. A genomic analysis of RNA polymerase II modification and chromatin architecture related to 3' end RNA polyadenylation. Lian Z; Karpikov A; Lian J; Mahajan MC; Hartman S; Gerstein M; Snyder M; Weissman SM Genome Res; 2008 Aug; 18(8):1224-37. PubMed ID: 18487515 [TBL] [Abstract][Full Text] [Related]
59. Functional coupling of cleavage and polyadenylation with transcription of mRNA. Adamson TE; Shutt DC; Price DH J Biol Chem; 2005 Sep; 280(37):32262-71. PubMed ID: 16041059 [TBL] [Abstract][Full Text] [Related]
60. Elevated levels of the polyadenylation factor CstF 64 enhance formation of the 1kB Testis brain RNA-binding protein (TB-RBP) mRNA in male germ cells. Chennathukuzhi VM; Lefrancois S; Morales CR; Syed V; Hecht NB Mol Reprod Dev; 2001 Apr; 58(4):460-9. PubMed ID: 11241784 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]