BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 26527731)

  • 1. Allosteric ring assembly and chemo-mechanical melting by the interaction between 5'-phosphate and λ exonuclease.
    Yoo J; Lee G
    Nucleic Acids Res; 2015 Dec; 43(22):10861-9. PubMed ID: 26527731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The enzymatic basis of processivity in lambda exonuclease.
    Subramanian K; Rutvisuttinunt W; Scott W; Myers RS
    Nucleic Acids Res; 2003 Mar; 31(6):1585-96. PubMed ID: 12626699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-molecule analysis reveals three phases of DNA degradation by an exonuclease.
    Lee G; Yoo J; Leslie BJ; Ha T
    Nat Chem Biol; 2011 Jun; 7(6):367-74. PubMed ID: 21552271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Structure-Activity Analysis for Probing the Mechanism of Processive Double-Stranded DNA Digestion by λ Exonuclease Trimers.
    Pan X; Smith CE; Zhang J; McCabe KA; Fu J; Bell CE
    Biochemistry; 2015 Oct; 54(39):6139-48. PubMed ID: 26361255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A DNA machine for sensitive and homogeneous DNA detection via lambda exonuclease assisted amplification.
    Liu L; Lei J; Gao F; Ju H
    Talanta; 2013 Oct; 115():819-22. PubMed ID: 24054668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noncanonical substrate preference of lambda exonuclease for 5'-nonphosphate-ended dsDNA and a mismatch-induced acceleration effect on the enzymatic reaction.
    Wu T; Yang Y; Chen W; Wang J; Yang Z; Wang S; Xiao X; Li M; Zhao M
    Nucleic Acids Res; 2018 Apr; 46(6):3119-3129. PubMed ID: 29490081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A programmable Y-shaped junction scaffold-mediated modular and cascade amplification strategy for the one-step, isothermal and ultrasensitive detection of target DNA.
    Liu S; Gong H; Sun X; Liu T; Wang L
    Chem Commun (Camb); 2015 Dec; 51(100):17756-9. PubMed ID: 26492526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-molecule kinetics of lambda exonuclease reveal base dependence and dynamic disorder.
    van Oijen AM; Blainey PC; Crampton DJ; Richardson CC; Ellenberger T; Xie XS
    Science; 2003 Aug; 301(5637):1235-8. PubMed ID: 12947199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence-dependent pausing of single lambda exonuclease molecules.
    Perkins TT; Dalal RV; Mitsis PG; Block SM
    Science; 2003 Sep; 301(5641):1914-8. PubMed ID: 12947034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pre-steady-state kinetics of RB69 DNA polymerase and its exo domain mutants: effect of pH and thiophosphoryl linkages on 3'-5' exonuclease activity.
    Wang CX; Zakharova E; Li J; Joyce CM; Wang J; Konigsberg W
    Biochemistry; 2004 Apr; 43(13):3853-61. PubMed ID: 15049692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA polymerase proofreading: active site switching catalyzed by the bacteriophage T4 DNA polymerase.
    Fidalgo da Silva E; Reha-Krantz LJ
    Nucleic Acids Res; 2007; 35(16):5452-63. PubMed ID: 17702757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toroidal structure of lambda-exonuclease.
    Kovall R; Matthews BW
    Science; 1997 Sep; 277(5333):1824-7. PubMed ID: 9295273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacteriophage P22 Abc2 protein binds to RecC increases the 5' strand nicking activity of RecBCD and together with lambda bet, promotes Chi-independent recombination.
    Murphy KC
    J Mol Biol; 2000 Feb; 296(2):385-401. PubMed ID: 10669596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing DNA polymerase-DNA interactions: examining the template strand in exonuclease complexes using 2-aminopurine fluorescence and acrylamide quenching.
    Tleugabulova D; Reha-Krantz LJ
    Biochemistry; 2007 Jun; 46(22):6559-69. PubMed ID: 17497891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of bacteriophage T4 DNA polymerase function: identification of amino acid residues that affect switching between polymerase and 3' --> 5' exonuclease activities.
    Stocki SA; Nonay RL; Reha-Krantz LJ
    J Mol Biol; 1995 Nov; 254(1):15-28. PubMed ID: 7473755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of T4 polynucleotide kinase activity based on cationic conjugated polymer-mediated fluorescence resonance energy transfer.
    Lian S; Liu C; Zhang X; Wang H; Li Z
    Biosens Bioelectron; 2015 Apr; 66():316-20. PubMed ID: 25437369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiplexed single-molecule assay for enzymatic activity on flow-stretched DNA.
    Kim S; Blainey PC; Schroeder CM; Xie XS
    Nat Methods; 2007 May; 4(5):397-9. PubMed ID: 17435763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time direct observation of single-molecule DNA hydrolysis by exonuclease III.
    Kurita H; Inaishi K; Torii K; Urisu M; Nakano M; Katsura S; Mizuno A
    J Biomol Struct Dyn; 2008 Apr; 25(5):473-80. PubMed ID: 18282002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and functional insight into the mechanism of an alkaline exonuclease from Laribacter hongkongensis.
    Yang W; Chen WY; Wang H; Ho JW; Huang JD; Woo PC; Lau SK; Yuen KY; Zhang Q; Zhou W; Bartlam M; Watt RM; Rao Z
    Nucleic Acids Res; 2011 Dec; 39(22):9803-19. PubMed ID: 21893587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time observation of a single DNA digestion by lambda exonuclease under a fluorescence microscope field.
    Matsuura S; Komatsu J; Hirano K; Yasuda H; Takashima K; Katsura S; Mizuno A
    Nucleic Acids Res; 2001 Aug; 29(16):E79. PubMed ID: 11504887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.