These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 26527772)

  • 21. In-cell single-molecule FRET measurements reveal three conformational state changes in RAF protein.
    Okamoto K; Hibino K; Sako Y
    Biochim Biophys Acta Gen Subj; 2020 Feb; 1864(2):129358. PubMed ID: 31071411
    [TBL] [Abstract][Full Text] [Related]  

  • 22. RNA intramolecular dynamics by single-molecule FRET.
    Hengesbach M; Kobitski A; Voigts-Hoffmann F; Frauer C; Nienhaus GU; Helm M
    Curr Protoc Nucleic Acid Chem; 2008 Sep; Chapter 11():Unit 11.12. PubMed ID: 18819081
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prism-type total internal reflection microscopy for single-molecule FRET.
    Joo C; Ha T
    Cold Spring Harb Protoc; 2012 Dec; 2012(12):. PubMed ID: 23209134
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alternating-laser excitation of single molecules.
    Kapanidis AN; Laurence TA; Lee NK; Margeat E; Kong X; Weiss S
    Acc Chem Res; 2005 Jul; 38(7):523-33. PubMed ID: 16028886
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Single-molecule FRET analysis of helicase functions.
    Rothenberg E; Ha T
    Methods Mol Biol; 2010; 587():29-43. PubMed ID: 20225140
    [TBL] [Abstract][Full Text] [Related]  

  • 26. How the dyes affect folding of small proteins in single-molecule FRET experiments: A simulation study.
    Chekmarev SF
    Biophys Chem; 2019 Nov; 254():106243. PubMed ID: 31442765
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm.
    He L; Bradrick TD; Karpova TS; Wu X; Fox MH; Fischer R; McNally JG; Knutson JR; Grammer AC; Lipsky PE
    Cytometry A; 2003 May; 53(1):39-54. PubMed ID: 12701131
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detecting molecular interactions in live-cell single-molecule imaging with proximity-assisted photoactivation (PAPA).
    Graham TGW; Ferrie JJ; Dailey GM; Tjian R; Darzacq X
    Elife; 2022 Aug; 11():. PubMed ID: 35976226
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analyzing Single Molecule FRET Trajectories Using HMM.
    Okamoto K
    Methods Mol Biol; 2017; 1552():103-113. PubMed ID: 28224493
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Multicolor Single-Molecule FRET Approach to Study Protein Dynamics and Interactions Simultaneously.
    Götz M; Wortmann P; Schmid S; Hugel T
    Methods Enzymol; 2016; 581():487-516. PubMed ID: 27793290
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multicolor single-molecule spectroscopy with alternating laser excitation for the investigation of interactions and dynamics.
    Ross J; Buschkamp P; Fetting D; Donnermeyer A; Roth CM; Tinnefeld P
    J Phys Chem B; 2007 Jan; 111(2):321-6. PubMed ID: 17214479
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Single-molecule, real-time measurement of enzyme kinetics by alternating-laser excitation fluorescence resonance energy transfer.
    Lee NK; Koh HR; Han KY; Lee J; Kim SK
    Chem Commun (Camb); 2010 Jul; 46(26):4683-5. PubMed ID: 20517547
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Caging and Photoactivation in Single-Molecule Förster Resonance Energy Transfer Experiments.
    Jazi AA; Ploetz E; Arizki M; Dhandayuthapani B; Waclawska I; Krämer R; Ziegler C; Cordes T
    Biochemistry; 2017 Apr; 56(14):2031-2041. PubMed ID: 28362086
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Four-color alternating-laser excitation single-molecule fluorescence spectroscopy for next-generation biodetection assays.
    Yim SW; Kim T; Laurence TA; Partono S; Kim D; Kim Y; Weiss S; Reitmair A
    Clin Chem; 2012 Apr; 58(4):707-16. PubMed ID: 22266381
    [TBL] [Abstract][Full Text] [Related]  

  • 35. FRET-based dynamic structural biology: Challenges, perspectives and an appeal for open-science practices.
    Lerner E; Barth A; Hendrix J; Ambrose B; Birkedal V; Blanchard SC; Börner R; Sung Chung H; Cordes T; Craggs TD; Deniz AA; Diao J; Fei J; Gonzalez RL; Gopich IV; Ha T; Hanke CA; Haran G; Hatzakis NS; Hohng S; Hong SC; Hugel T; Ingargiola A; Joo C; Kapanidis AN; Kim HD; Laurence T; Lee NK; Lee TH; Lemke EA; Margeat E; Michaelis J; Michalet X; Myong S; Nettels D; Peulen TO; Ploetz E; Razvag Y; Robb NC; Schuler B; Soleimaninejad H; Tang C; Vafabakhsh R; Lamb DC; Seidel CA; Weiss S
    Elife; 2021 Mar; 10():. PubMed ID: 33779550
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Camera-based single-molecule FRET detection with improved time resolution.
    Farooq S; Hohlbein J
    Phys Chem Chem Phys; 2015 Nov; 17(41):27862-72. PubMed ID: 26439729
    [TBL] [Abstract][Full Text] [Related]  

  • 37. FRET imaging.
    Jares-Erijman EA; Jovin TM
    Nat Biotechnol; 2003 Nov; 21(11):1387-95. PubMed ID: 14595367
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Developing DNA nanotechnology using single-molecule fluorescence.
    Tsukanov R; Tomov TE; Liber M; Berger Y; Nir E
    Acc Chem Res; 2014 Jun; 47(6):1789-98. PubMed ID: 24828396
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simple and efficient strategy for site-specific dual labeling of proteins for single-molecule fluorescence resonance energy transfer analysis.
    Kim J; Seo MH; Lee S; Cho K; Yang A; Woo K; Kim HS; Park HS
    Anal Chem; 2013 Feb; 85(3):1468-74. PubMed ID: 23276151
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microscopic analysis of fluorescence resonance energy transfer (FRET).
    Herman B; Krishnan RV; Centonze VE
    Methods Mol Biol; 2004; 261():351-70. PubMed ID: 15064469
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.