These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 26527813)
21. Stable vortex solitons in the two-dimensional Ginzburg-Landau equation. Crasovan LC; Malomed BA; Mihalache D Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016605. PubMed ID: 11304376 [TBL] [Abstract][Full Text] [Related]
22. Localized modes in dissipative lattice media: an overview. He Y; Malomed BA; Mihalache D Philos Trans A Math Phys Eng Sci; 2014 Oct; 372(2027):. PubMed ID: 25246672 [TBL] [Abstract][Full Text] [Related]
23. Collisions between counter-rotating solitary vortices in the three-dimensional Ginzburg-Landau equation. Mihalache D; Mazilu D; Lederer F; Leblond H; Malomed BA Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 2):056601. PubMed ID: 19113227 [TBL] [Abstract][Full Text] [Related]
24. Influence of Dirichlet boundary conditions on dissipative solitons in the cubic-quintic complex Ginzburg-Landau equation. Descalzi O; Brand HR Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 2):026210. PubMed ID: 20365641 [TBL] [Abstract][Full Text] [Related]
25. Anomalous Diffusion of Dissipative Solitons in the Cubic-Quintic Complex Ginzburg-Landau Equation in Two Spatial Dimensions. Cisternas J; Descalzi O; Albers T; Radons G Phys Rev Lett; 2016 May; 116(20):203901. PubMed ID: 27258868 [TBL] [Abstract][Full Text] [Related]
26. Stationary and oscillatory bound states of dissipative solitons created by third-order dispersion. Sakaguchi H; Skryabin DV; Malomed BA Opt Lett; 2018 Jun; 43(11):2688-2691. PubMed ID: 29856394 [TBL] [Abstract][Full Text] [Related]
28. From one- to two-dimensional solitons in the Ginzburg-Landau model of lasers with frequency-selective feedback. Paulau PV; Gomila D; Colet P; Malomed BA; Firth WJ Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036213. PubMed ID: 22060481 [TBL] [Abstract][Full Text] [Related]
29. Transition from modulated to exploding dissipative solitons: hysteresis, dynamics, and analytic aspects. Descalzi O; Brand HR Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 2):026203. PubMed ID: 20866889 [TBL] [Abstract][Full Text] [Related]
30. Modulation instability in nonlinear metamaterials modeled by a cubic-quintic complex Ginzburg-Landau equation beyond the slowly varying envelope approximation. Megne LT; Tabi CB; Kofane TC Phys Rev E; 2020 Oct; 102(4-1):042207. PubMed ID: 33212598 [TBL] [Abstract][Full Text] [Related]
31. Breaking of symmetry of interacting dissipative solitons can lead to partial annihilation. Descalzi O; Brand HR Phys Rev E; 2020 Apr; 101(4-1):040201. PubMed ID: 32422738 [TBL] [Abstract][Full Text] [Related]
32. Stationary and pulsating dissipative light bullets from a collective variable approach. Kamagate A; Grelu P; Tchofo-Dinda P; Soto-Crespo JM; Akhmediev N Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):026609. PubMed ID: 19391865 [TBL] [Abstract][Full Text] [Related]
33. Accessible solitons in complex Ginzburg-Landau media. He Y; Malomed BA Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042912. PubMed ID: 24229254 [TBL] [Abstract][Full Text] [Related]
35. Impact of phase on collision between vortex solitons in three-dimensional cubic-quintic complex Ginzburg-Landau equation. Liu B; Liu YF; He XD Opt Express; 2014 Oct; 22(21):26203-11. PubMed ID: 25401652 [TBL] [Abstract][Full Text] [Related]
36. Stability conditions for moving dissipative solitons in one- and multidimensional systems with a linear potential. Zhu WL; He YJ Opt Express; 2010 Aug; 18(16):17053-8. PubMed ID: 20721093 [TBL] [Abstract][Full Text] [Related]
37. Dissipative ring solitons with vorticity. Soto-Crespo JM; Akhmediev N; Mejia-Cortés C; Devine N Opt Express; 2009 Mar; 17(6):4236-50. PubMed ID: 19293847 [TBL] [Abstract][Full Text] [Related]
38. Phase controlling of collisions between solitons in the two-dimensional complex Ginzburg-Landau equation without viscosity. Liu B; He XD; Li SJ Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056607. PubMed ID: 22181536 [TBL] [Abstract][Full Text] [Related]