These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
66. Mobility of solitons in one-dimensional lattices with the cubic-quintic nonlinearity. Mejía-Cortés C; Vicencio RA; Malomed BA Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052901. PubMed ID: 24329325 [TBL] [Abstract][Full Text] [Related]
68. Control of dissipative solitons in a magneto-optic planar waveguide. Kochetov BA; Vasylieva I; Kochetova LA; Sun HB; Tuz VR Opt Lett; 2017 Feb; 42(3):531-534. PubMed ID: 28146520 [TBL] [Abstract][Full Text] [Related]
69. Pattern formation by kicked solitons in the two-dimensional Ginzburg-Landau medium with a transverse grating. Besse V; Leblond H; Mihalache D; Malomed BA Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012916. PubMed ID: 23410413 [TBL] [Abstract][Full Text] [Related]
70. Stability boundary and collisions of two-dimensional solitons in PT-symmetric couplers with the cubic-quintic nonlinearity. Burlak G; Malomed BA Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062904. PubMed ID: 24483528 [TBL] [Abstract][Full Text] [Related]
71. Static, oscillating modulus, and moving pulses in the one-dimensional quintic complex Ginzburg-Landau equation: an analytical approach. Descalzi O Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046210. PubMed ID: 16383515 [TBL] [Abstract][Full Text] [Related]
72. Vortex induced rotation of clusters of localized states in the complex Ginzburg-Landau equation. Skryabin DV; Vladimirov AG Phys Rev Lett; 2002 Jul; 89(4):044101. PubMed ID: 12144483 [TBL] [Abstract][Full Text] [Related]
73. Fusion of necklace-ring patterns into vortex and fundamental solitons in dissipative media. He YJ; Malomed BA; Wang HZ Opt Express; 2007 Dec; 15(26):17502-8. PubMed ID: 19551043 [TBL] [Abstract][Full Text] [Related]
74. Moving breathing pulses in the one-dimensional complex cubic-quintic Ginzburg-Landau equation. Gutiérrez P; Escaff D; Pérez-Oyarzún S; Descalzi O Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):037202. PubMed ID: 19905250 [TBL] [Abstract][Full Text] [Related]
75. Dynamic evolution of pulsating solitons in a dissipative system with the gain saturation effect. He R; Wang Z; Liu Y; Wang Z; Liang H; Han S; He J Opt Express; 2018 Dec; 26(25):33116-33128. PubMed ID: 30645468 [TBL] [Abstract][Full Text] [Related]
76. Stable solitons of quadratic ginzburg-landau equations. Crasovan LC; Malomed BA; Mihalache D; Mazilu D; Lederer F Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jul; 62(1 Pt B):1322-7. PubMed ID: 11088591 [TBL] [Abstract][Full Text] [Related]
77. Transition from pulses to fronts in the cubic-quintic complex Ginzburg-Landau equation. Gutiérrez P; Escaff D; Descalzi O Philos Trans A Math Phys Eng Sci; 2009 Aug; 367(1901):3227-38. PubMed ID: 19620120 [TBL] [Abstract][Full Text] [Related]
78. Discrete and periodic complex Ginzburg-Landau equation for a hydrodynamic active lattice. Thomson SJ; Durey M; Rosales RR Phys Rev E; 2021 Jun; 103(6-1):062215. PubMed ID: 34271671 [TBL] [Abstract][Full Text] [Related]
79. Coupled-mode theory for spatial gap solitons in optically induced lattices. Malomed BA; Mayteevarunyoo T; Ostrovskaya EA; Kivshar YS Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):056616. PubMed ID: 16089677 [TBL] [Abstract][Full Text] [Related]
80. Defect chaos and bursts: hexagonal rotating convection and the complex Ginzburg-Landau equation. Madruga S; Riecke H; Pesch W Phys Rev Lett; 2006 Feb; 96(7):074501. PubMed ID: 16606097 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]