BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 26528)

  • 1. Dihydropyrimidinase. Metabolism of some cyclic imides of different ring size.
    Maguire JH; Dudley KH
    Drug Metab Dispos; 1978; 6(2):140-5. PubMed ID: 26528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyclic-imide-hydrolyzing activity of D-hydantoinase from Blastobacter sp. strain A17p-4.
    Soong CL; Ogawa J; Honda M; Shimizu S
    Appl Environ Microbiol; 1999 Apr; 65(4):1459-62. PubMed ID: 10515797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel amidase (half-amidase) for half-amide hydrolysis involved in the bacterial metabolism of cyclic imides.
    Soong CL; Ogawa J; Shimizu S
    Appl Environ Microbiol; 2000 May; 66(5):1947-52. PubMed ID: 10788365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dihydropyrimidinase. Stereochemistry of the metabolism of some 5-alkylhydantoins.
    Dudley KH; Roberts SB
    Drug Metab Dispos; 1978; 6(2):133-9. PubMed ID: 26527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imidase, a dihydropyrimidinase-like enzyme involved in the metabolism of cyclic imides.
    Ogawa J; Soong CL; Honda M; Shimizu S
    Eur J Biochem; 1997 Jan; 243(1-2):322-7. PubMed ID: 9030755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Partial purification and characterization of dihydropyrimidinases from calf and rat liver.
    Maguire JH; Dudley KH
    Drug Metab Dispos; 1978; 6(5):601-5. PubMed ID: 30611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [A dicarboxylate monoamide amidohydrolase (half-amidase) from Alcaligenes eutrophus 112R4].
    Zhang Y; Wang Y; Yu Z; Liu Y; Wang J; Ding J
    Wei Sheng Wu Xue Bao; 2003 Feb; 43(1):87-93. PubMed ID: 16276876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of dihydropyrimidinase in the metabolism of some hydantoin and succinimide drugs.
    Dudley KH; Butler TC; Bius DL
    Drug Metab Dispos; 1974; 2(2):103-12. PubMed ID: 4150990
    [No Abstract]   [Full Text] [Related]  

  • 9. The effects of cyclic imides on lipoprotein receptor binding and degradation of rat and human cells and effects on regulatory enzymes of lipid metabolism.
    Wong OT; Williams WL; Oswald BS; Hall IH
    Res Commun Chem Pathol Pharmacol; 1992 Apr; 76(1):3-32. PubMed ID: 1325661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypolipidemic Agents of Phthalimide Derivatives 6. Effects of Aromatic vs. Non-Aromatic Imides.
    Chapman JM; Wyrick SD; Maguire JH; Cocolas GH; Hall IH
    Pharm Res; 1984 Nov; 1(6):267-9. PubMed ID: 24277360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of a Putative Dihydropyrimidinase from Pseudomonas aeruginosa PAO1 by Flavonoids and Substrates of Cyclic Amidohydrolases.
    Huang CY
    PLoS One; 2015; 10(5):e0127634. PubMed ID: 25993634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intercalation of cyclic imides in kaolinite.
    Elbokl TA; Detellier C
    J Colloid Interface Sci; 2008 Jul; 323(2):338-48. PubMed ID: 18479695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery of a novel N-iminylamidase activity: substrate specificity, chemicoselectivity and catalytic mechanism.
    Huang CY; Yang YS
    Protein Expr Purif; 2005 Mar; 40(1):203-11. PubMed ID: 15721790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colorimetric hydroxylamine-iron (III) methods for studies of the enzymatic hydrolyses of cyclic imides and of amic acids.
    Maguire JH; Dudley KH
    Anal Chem; 1977 Feb; 49(2):292-7. PubMed ID: 835821
    [No Abstract]   [Full Text] [Related]  

  • 15. Cytochrome P-455-nm complex formation in the metabolism of phenylalkylamines. VI. Structure--activity relationships in metabolic intermediary complex formation with a series of alpha-substituted 2-phenylethylamines and corresponding N-hydroxylamines.
    Lindeke B; Paulsen-Sörman U; Hallström G; Khuthier AH; Cho AK; Kammerer RC
    Drug Metab Dispos; 1982; 10(6):700-5. PubMed ID: 6130927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stereoselective glutathione conjugation and amidase-catalyzed hydrolysis of alpha-bromoisovalerylurea enantiomers in isolated rat hepatocytes.
    te Koppele JM; de Lannoy IA; Pang KS; Mulder GJ
    J Pharmacol Exp Ther; 1987 Oct; 243(1):349-55. PubMed ID: 3668862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel and versatile methodology for synthesis of cyclic imides and evaluation of their cytotoxic, DNA binding, apoptotic inducing activities and molecular modeling study.
    Abdel-Aziz AA
    Eur J Med Chem; 2007 May; 42(5):614-26. PubMed ID: 17234303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution of cyclic imide-transforming activity in microorganisms.
    Soong CL; Ogawa J; Sukiman H; Prana T; Sri Prana M; Shimizu S
    FEMS Microbiol Lett; 1998 Jan; 158(1):51-5. PubMed ID: 9453155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NTP technical report on the toxicity and metabolism studies of chloral hydrate (CAS No. 302-17-0). Administered by gavage to F344/N rats and B6C3F1 mice.
    Beland FA
    Toxic Rep Ser; 1999 Aug; (59):1-66, A1-E7. PubMed ID: 11803702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolism and disposition of 3-amino-1,5-dihydro-5-methyl-1-beta-D-ribofuranosyl-1,4,5,6, 8-pentaazaacenaphthylene in the rat.
    Basseches PJ; Powis G
    Cancer Res; 1984 Sep; 44(9):3672-8. PubMed ID: 6540141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.