These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 26528078)

  • 1. On rate-dependent polycrystal deformation: the temperature sensitivity of cold dwell fatigue.
    Zhang Z; Cuddihy MA; Dunne FP
    Proc Math Phys Eng Sci; 2015 Sep; 471(2181):20150214. PubMed ID: 26528078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of molybdenum in suppressing cold dwell fatigue in titanium alloys.
    Ready AJ; Haynes PD; Grabowski B; Rugg D; Sutton AP
    Proc Math Phys Eng Sci; 2017 Jul; 473(2203):20170189. PubMed ID: 28804261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting dwell fatigue life in titanium alloys using modelling and experiment.
    Xu Y; Joseph S; Karamched P; Fox K; Rugg D; Dunne FPE; Dye D
    Nat Commun; 2020 Nov; 11(1):5868. PubMed ID: 33203830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Dwell Time on the Deformation and Fatigue Behaviour of A356-T7 Cast Aluminium Alloys Used in High Specific Power IC Engine Cylinder Heads.
    Natesan E; Meyer KA; Eriksson S; Ahlström J; Persson C
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32549359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Grain size-dependent crystal plasticity constitutive model for polycrystal materials.
    Moghaddam MG; Achuthan A; Bednarcyk BA; Arnold SM; Pineda EJ
    Mater Sci Eng A Struct Mater; 2017 Aug; Volume 703():521-532. PubMed ID: 32690982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics simulation on creep-ratcheting behavior of columnar nanocrystalline aluminum.
    Babu PN; Pal S
    J Mol Graph Model; 2023 Jan; 118():108376. PubMed ID: 36413920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Creep Damage on the Fatigue Life of P91 Steel.
    Mroziński S; Lis Z; Egner H
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Creep-Fatigue Crack Initiation Simulation of a Modified 12% Cr Steel Based on Grain Boundary Cavitation and Plastic Slip Accumulation.
    Jin X; Wang RZ; Shu Y; Fei JW; Wen JF; Tu ST
    Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of fatigue crack initiation facets in Ti-6Al-4V using focused ion beam milling and electron backscatter diffraction.
    Everaerts J; Verlinden B; Wevers M
    J Microsc; 2017 Jul; 267(1):57-69. PubMed ID: 28294326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting the Tensile Behavior of Ti-6.6Al-3.3Mo-1.8Zr-0.29Si Alloy via the Temperature-Dependent Crystal Plasticity Method.
    Zhang J; Wang Y; Wang P; Chen J; Zheng S
    Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31561449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stress-Strain Curves and Modified Material Constitutive Model for Ti-6Al-4V over the Wide Ranges of Strain Rate and Temperature.
    Hou X; Liu Z; Wang B; Lv W; Liang X; Hua Y
    Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29865223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of alloying on slip intermittency and the implications for dwell fatigue in titanium.
    Worsnop FF; Lim RE; Bernier JV; Pagan DC; Xu Y; McAuliffe TP; Rugg D; Dye D
    Nat Commun; 2022 Oct; 13(1):5949. PubMed ID: 36216805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Data of dynamic microscale strain distributions of Ti-6Al-4V alloys in dwell fatigue tests.
    Wang Q; Ri S; Maenosono A; Tanaka Y; Koyama M
    Data Brief; 2019 Aug; 25():104338. PubMed ID: 31485467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclic Deformation and Correspondent Crack Initiation at Low-Stress Amplitudes in Mg⁻Gd⁻Y⁻Zr Alloy.
    He C; Wu Y; Peng L; Su N; Li X; Yang K; Liu Y; Yuan S; Tian R
    Materials (Basel); 2018 Nov; 11(12):. PubMed ID: 30513615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dislocation dynamics modelling of the creep behaviour of particle-strengthened materials.
    Liu FX; Cocks ACF; Tarleton E
    Proc Math Phys Eng Sci; 2021 Jun; 477(2250):20210083. PubMed ID: 35153563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of Differential Entropy in Characterizing the Deformation Inhomogeneity and Life Prediction of Low-Cycle Fatigue of Metals.
    Zhang MH; Shen XH; He L; Zhang KS
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30304838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discrete dislocation simulation of the ultrasonic relaxation of non-equilibrium grain boundaries in a deformed polycrystal.
    Bachurin DV; Murzaev RT; Nazarov AA
    Ultrasonics; 2021 Dec; 117():106555. PubMed ID: 34455145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ratcheting Strain and Microstructure Evolution of AZ31B Magnesium Alloy under a Tensile-Tensile Cyclic Loading.
    Yan Z; Wang D; Wang W; Zhou J; He X; Dong P; Zhang H; Sun L
    Materials (Basel); 2018 Mar; 11(4):. PubMed ID: 29597278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-Temperature Superplasticity and Deformation Mechanism of Ti-6Al-4V Alloy.
    Zhou G; Chen L; Liu L; Liu H; Peng H; Zhong Y
    Materials (Basel); 2018 Jul; 11(7):. PubMed ID: 30011883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclic Deformation and Fatigue Failure Mechanisms of Thermoplastic Polyurethane in High Cycle Fatigue.
    Wang S; Tang S; He C; Wang Q
    Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.