These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 26528168)

  • 1. Brain state-dependent robotic reaching movement with a multi-joint arm exoskeleton: combining brain-machine interfacing and robotic rehabilitation.
    Brauchle D; Vukelić M; Bauer R; Gharabaghi A
    Front Hum Neurosci; 2015; 9():564. PubMed ID: 26528168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid Neuroprosthesis for the Upper Limb: Combining Brain-Controlled Neuromuscular Stimulation with a Multi-Joint Arm Exoskeleton.
    Grimm F; Walter A; Spüler M; Naros G; Rosenstiel W; Gharabaghi A
    Front Neurosci; 2016; 10():367. PubMed ID: 27555805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Closed-Loop Task Difficulty Adaptation during Virtual Reality Reach-to-Grasp Training Assisted with an Exoskeleton for Stroke Rehabilitation.
    Grimm F; Naros G; Gharabaghi A
    Front Neurosci; 2016; 10():518. PubMed ID: 27895550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oscillatory entrainment of the motor cortical network during motor imagery is modulated by the feedback modality.
    Vukelić M; Gharabaghi A
    Neuroimage; 2015 May; 111():1-11. PubMed ID: 25665968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rewiring Cortico-Muscular Control in the Healthy and Poststroke Human Brain with Proprioceptive β-Band Neurofeedback.
    Khademi F; Naros G; Nicksirat A; Kraus D; Gharabaghi A
    J Neurosci; 2022 Sep; 42(36):6861-6877. PubMed ID: 35940874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compensation or Restoration: Closed-Loop Feedback of Movement Quality for Assisted Reach-to-Grasp Exercises with a Multi-Joint Arm Exoskeleton.
    Grimm F; Naros G; Gharabaghi A
    Front Neurosci; 2016; 10():280. PubMed ID: 27445655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain-Machine Neurofeedback: Robotics or Electrical Stimulation?
    Guggenberger R; Heringhaus M; Gharabaghi A
    Front Bioeng Biotechnol; 2020; 8():639. PubMed ID: 32733860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of visual distraction and auditory feedback on patient effort during robot-assisted movement training after stroke.
    Secoli R; Milot MH; Rosati G; Reinkensmeyer DJ
    J Neuroeng Rehabil; 2011 Apr; 8():21. PubMed ID: 21513561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Closed-Loop Neuroprosthesis for Reach-to-Grasp Assistance: Combining Adaptive Multi-channel Neuromuscular Stimulation with a Multi-joint Arm Exoskeleton.
    Grimm F; Gharabaghi A
    Front Neurosci; 2016; 10():284. PubMed ID: 27445658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different oscillatory entrainment of cortical networks during motor imagery and neurofeedback in right and left handers.
    Vukelić M; Belardinelli P; Guggenberger R; Royter V; Gharabaghi A
    Neuroimage; 2019 Jul; 195():190-202. PubMed ID: 30951847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proprioceptive feedback and brain computer interface (BCI) based neuroprostheses.
    Ramos-Murguialday A; Schürholz M; Caggiano V; Wildgruber M; Caria A; Hammer EM; Halder S; Birbaumer N
    PLoS One; 2012; 7(10):e47048. PubMed ID: 23071707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reinforcement learning of self-regulated β-oscillations for motor restoration in chronic stroke.
    Naros G; Gharabaghi A
    Front Hum Neurosci; 2015; 9():391. PubMed ID: 26190995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive hybrid robotic system for rehabilitation of reaching movement after a brain injury: a usability study.
    Resquín F; Gonzalez-Vargas J; Ibáñez J; Brunetti F; Dimbwadyo I; Carrasco L; Alves S; Gonzalez-Alted C; Gomez-Blanco A; Pons JL
    J Neuroeng Rehabil; 2017 Oct; 14(1):104. PubMed ID: 29025427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain oscillatory signatures of motor tasks.
    Ramos-Murguialday A; Birbaumer N
    J Neurophysiol; 2015 Jun; 113(10):3663-82. PubMed ID: 25810484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a Novel Task-oriented Rehabilitation Program using a Bimanual Exoskeleton Robotic Hand.
    Chen YM; Lai SS; Pei YC; Hsieh CJ; Chang WH
    J Vis Exp; 2020 May; (159):. PubMed ID: 32510515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synchronization of Slow Cortical Rhythms During Motor Imagery-Based Brain-Machine Interface Control.
    Barios JA; Ezquerro S; Bertomeu-Motos A; Nann M; Badesa FJ; Fernandez E; Soekadar SR; Garcia-Aracil N
    Int J Neural Syst; 2019 Jun; 29(5):1850045. PubMed ID: 30587046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupling brain-machine interfaces with cortical stimulation for brain-state dependent stimulation: enhancing motor cortex excitability for neurorehabilitation.
    Gharabaghi A; Kraus D; Leão MT; Spüler M; Walter A; Bogdan M; Rosenstiel W; Naros G; Ziemann U
    Front Hum Neurosci; 2014; 8():122. PubMed ID: 24634650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain-robot interface driven plasticity: Distributed modulation of corticospinal excitability.
    Kraus D; Naros G; Bauer R; Leão MT; Ziemann U; Gharabaghi A
    Neuroimage; 2016 Jan; 125():522-532. PubMed ID: 26505298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recruitment of Additional Corticospinal Pathways in the Human Brain with State-Dependent Paired Associative Stimulation.
    Kraus D; Naros G; Guggenberger R; Leão MT; Ziemann U; Gharabaghi A
    J Neurosci; 2018 Feb; 38(6):1396-1407. PubMed ID: 29335359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.