These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 26528286)

  • 61. The role of hypoxia in shaping the recruitment of proangiogenic and immunosuppressive cells in the tumor microenvironment.
    Chouaib S; Umansky V; Kieda C
    Contemp Oncol (Pozn); 2018 Mar; 22(1A):7-13. PubMed ID: 29628788
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Augmenting antitumor immune responses with epigenetic modifying agents.
    Héninger E; Krueger TE; Lang JM
    Front Immunol; 2015; 6():29. PubMed ID: 25699047
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Epigenetic editing and tumor-dependent immunosuppressive signaling in head and neck malignancies.
    Gougousis S; Petanidis S; Poutoglidis A; Tsetsos N; Vrochidis P; Skoumpas I; Argyriou N; Katopodi T; Domvri K
    Oncol Lett; 2022 Jun; 23(6):196. PubMed ID: 35572491
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The roles of curcumin in regulating the tumor immunosuppressive microenvironment.
    Wang Y; Lu J; Jiang B; Guo J
    Oncol Lett; 2020 Apr; 19(4):3059-3070. PubMed ID: 32256807
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A new hypothesis: some metastases are the result of inflammatory processes by adapted cells, especially adapted immune cells at sites of inflammation.
    Shahriyari L
    F1000Res; 2016; 5():175. PubMed ID: 27158448
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Immune effects of 5-fluorouracil: Ambivalence matters.
    Ghiringhelli F; Bruchard M; Apetoh L
    Oncoimmunology; 2013 Mar; 2(3):e23139. PubMed ID: 23802066
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Myelopoiesis, metabolism and therapy: a crucial crossroads in cancer progression.
    Sica A; Guarneri V; Gennari A
    Cell Stress; 2019 Jul; 3(9):284-294. PubMed ID: 31535085
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Regramming myeloid responses to improve cancer immunotherapy.
    Zhu Y; Hawkins WG; DeNardo DG
    Oncoimmunology; 2015 Jun; 4(6):e974399. PubMed ID: 26155432
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Monitoring of the Immune Dysfunction in Cancer Patients.
    Santegoets SJ; Welters MJ; van der Burg SH
    Vaccines (Basel); 2016 Sep; 4(3):. PubMed ID: 27598210
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Neutrophils and Granulocytic MDSC: The Janus God of Cancer Immunotherapy.
    Zilio S; Serafini P
    Vaccines (Basel); 2016 Sep; 4(3):. PubMed ID: 27618112
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Role of chemotherapeutic drugs in immunomodulation of cancer.
    Mukherjee O; Rakshit S; Shanmugam G; Sarkar K
    Curr Res Immunol; 2023; 4():100068. PubMed ID: 37692091
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Cancer chemotherapy: insights into cellular and tumor microenvironmental mechanisms of action.
    Tilsed CM; Fisher SA; Nowak AK; Lake RA; Lesterhuis WJ
    Front Oncol; 2022; 12():960317. PubMed ID: 35965519
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Ovarian cancer and the immune system.
    Baert T; Vergote I; Coosemans A
    Gynecol Oncol Rep; 2017 Feb; 19():57-58. PubMed ID: 28127584
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Current trends of anticancer immunochemotherapy.
    Vacchelli E; Prada N; Kepp O; Galluzzi L
    Oncoimmunology; 2013 Jun; 2(6):e25396. PubMed ID: 23894726
    [No Abstract]   [Full Text] [Related]  

  • 75. The immunobiology of myeloid-derived suppressor cells in cancer.
    Motallebnezhad M; Jadidi-Niaragh F; Qamsari ES; Bagheri S; Gharibi T; Yousefi M
    Tumour Biol; 2016 Feb; 37(2):1387-406. PubMed ID: 26611648
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The Nature of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment.
    Kumar V; Patel S; Tcyganov E; Gabrilovich DI
    Trends Immunol; 2016 Mar; 37(3):208-220. PubMed ID: 26858199
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Myeloid-derived suppressor cells as intruders and targets: clinical implications in cancer therapy.
    Baniyash M
    Cancer Immunol Immunother; 2016 Jul; 65(7):857-67. PubMed ID: 27225641
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Myeloid-derived suppressor cells as effectors of immune suppression in cancer.
    Pyzer AR; Cole L; Rosenblatt J; Avigan DE
    Int J Cancer; 2016 Nov; 139(9):1915-26. PubMed ID: 27299510
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Phenotype, development, and biological function of myeloid-derived suppressor cells.
    Zhao Y; Wu T; Shao S; Shi B; Zhao Y
    Oncoimmunology; 2016 Feb; 5(2):e1004983. PubMed ID: 27057424
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Myeloid-derived suppressor cells: The green light for myeloma immune escape.
    Malek E; de Lima M; Letterio JJ; Kim BG; Finke JH; Driscoll JJ; Giralt SA
    Blood Rev; 2016 Sep; 30(5):341-8. PubMed ID: 27132116
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.