These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 26528632)

  • 1. Correction: Ultrafast immunoassays by coupling dielectrophoretic biomarker enrichment in nanoslit channel with electrochemical detection on graphene.
    Sanghavi BJ; Varhue W; Rohani A; Liao KT; Bazydlo LA; Chou CF; Swami NS
    Lab Chip; 2015 Dec; 15(24):4626. PubMed ID: 26528632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafast immunoassays by coupling dielectrophoretic biomarker enrichment in nanoslit channel with electrochemical detection on graphene.
    Sanghavi BJ; Varhue W; Rohani A; Liao KT; Bazydlo LA; Chou CF; Swami NS
    Lab Chip; 2015 Dec; 15(24):4563-70. PubMed ID: 26496877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoslit design for ion conductivity gradient enhanced dielectrophoresis for ultrafast biomarker enrichment in physiological media.
    Rohani A; Varhue W; Liao KT; Chou CF; Swami NS
    Biomicrofluidics; 2016 May; 10(3):033109. PubMed ID: 27462378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correction: Visible-light-enhanced power generation in microbial fuel cells coupling with 3D nitrogen-doped graphene.
    Guo D; Song RB; Shao HH; Zhang JR; Zhu JJ
    Chem Commun (Camb); 2017 Sep; 53(77):10738. PubMed ID: 28920975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoslit membrane-integrated fluidic chip for protein detection based on size-dependent particle trapping.
    Koh Y; Kang H; Lee SH; Yang JK; Kim JH; Lee YS; Kim YK
    Lab Chip; 2014 Jan; 14(1):237-43. PubMed ID: 24202619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frequency-selective electrokinetic enrichment of biomolecules in physiological media based on electrical double-layer polarization.
    Rohani A; Sanghavi BJ; Salahi A; Liao KT; Chou CF; Swami NS
    Nanoscale; 2017 Aug; 9(33):12124-12131. PubMed ID: 28805875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Urinary micro-RNA biomarker detection using capped gold nanoslit SPR in a microfluidic chip.
    Mousavi MZ; Chen HY; Lee KL; Lin H; Chen HH; Lin YF; Wong CS; Li HF; Wei PK; Cheng JY
    Analyst; 2015 Jun; 140(12):4097-104. PubMed ID: 25891475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrohydrodynamic-mediated dielectrophoretic separation and transport based on asymmetric electrode pairs.
    Du E; Manoochehri S
    Electrophoresis; 2008 Dec; 29(24):5017-25. PubMed ID: 19130586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures.
    Vasa P; Pomraenke R; Cirmi G; De Re E; Wang W; Schwieger S; Leipold D; Runge E; Cerullo G; Lienau C
    ACS Nano; 2010 Dec; 4(12):7559-65. PubMed ID: 21082799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correction: Proton conduction through oxygen functionalized few-layer graphene.
    Singh C; S N; Jana A; Mishra AK; Paul A
    Chem Commun (Camb); 2016 Nov; 52(89):13179. PubMed ID: 27774534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene-gated biochip for the detection of cardiac marker Troponin I.
    Tuteja SK; Priyanka ; Bhalla V; Deep A; Paul AK; Suri CR
    Anal Chim Acta; 2014 Jan; 809():148-54. PubMed ID: 24418146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast and continuous-flow separation of DNA-complexes and topological DNA variants in microfluidic chip format.
    Viefhues M; Regtmeier J; Anselmetti D
    Analyst; 2013 Jan; 138(1):186-96. PubMed ID: 23139928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correction: Electrochemical paper-based devices: sensing approaches and progress toward practical applications.
    Noviana E; McCord CP; Clark KM; Jang I; Henry CS
    Lab Chip; 2020 Jan; 20(1):185. PubMed ID: 31740911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The fabrication, characterisation and electrochemical investigation of screen-printed graphene electrodes.
    Randviir EP; Brownson DA; Metters JP; Kadara RO; Banks CE
    Phys Chem Chem Phys; 2014 Mar; 16(10):4598-611. PubMed ID: 24458292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A highly sensitive label-free electrochemical aptasensor for interferon-gamma detection based on graphene controlled assembly and nuclease cleavage-assisted target recycling amplification.
    Yan G; Wang Y; He X; Wang K; Liu J; Du Y
    Biosens Bioelectron; 2013 Jun; 44():57-63. PubMed ID: 23391707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Miniaturized immunoassays: moving beyond the microplate.
    Verch T; Bakhtiar R
    Bioanalysis; 2012 Jan; 4(2):177-88. PubMed ID: 22250800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of the dielectrophoretic enrichment of yeast on grid electrodes using image analysis.
    Brown AP; Harrison AB; Betts WB; O'Neill JG
    Microbios; 1997; 91(366):55-65. PubMed ID: 9467920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanogold/mesoporous carbon foam-mediated silver enhancement for graphene-enhanced electrochemical immunosensing of carcinoembryonic antigen.
    Lin D; Wu J; Ju H; Yan F
    Biosens Bioelectron; 2014 Feb; 52():153-8. PubMed ID: 24041661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An ionic liquid-modified graphene based molecular imprinting electrochemical sensor for sensitive detection of bovine hemoglobin.
    Wang Z; Li F; Xia J; Xia L; Zhang F; Bi S; Shi G; Xia Y; Liu J; Li Y; Xia L
    Biosens Bioelectron; 2014 Nov; 61():391-6. PubMed ID: 24912041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrafast charge transfer at monolayer graphene surfaces with varied substrate coupling.
    Lizzit S; Larciprete R; Lacovig P; Kostov KL; Menzel D
    ACS Nano; 2013 May; 7(5):4359-66. PubMed ID: 23570394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.