These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 26528761)

  • 1. Identification of Small Aliphatic Aldehydes in Pretreated Lignocellulosic Feedstocks and Evaluation of Their Inhibitory Effects on Yeast.
    Cavka A; Stagge S; Jönsson LJ
    J Agric Food Chem; 2015 Nov; 63(44):9747-54. PubMed ID: 26528761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ethanol fermentation of various pretreated and hydrolyzed substrates at low initial pH.
    Kádár Z; Maltha SF; Szengyel Z; Réczey K; de Laat W
    Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):847-58. PubMed ID: 18478439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review.
    Parawira W; Tekere M
    Crit Rev Biotechnol; 2011 Mar; 31(1):20-31. PubMed ID: 20513164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and detoxification of glycolaldehyde, an unattended bioethanol fermentation inhibitor.
    Jayakody LN; Ferdouse J; Hayashi N; Kitagaki H
    Crit Rev Biotechnol; 2017 Mar; 37(2):177-189. PubMed ID: 26953525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of glycolaldehyde as the key inhibitor of bioethanol fermentation by yeast and genome-wide analysis of its toxicity.
    Jayakody LN; Hayashi N; Kitagaki H
    Biotechnol Lett; 2011 Feb; 33(2):285-92. PubMed ID: 20960220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SUMO expression shortens the lag phase of Saccharomyces cerevisiae yeast growth caused by complex interactive effects of major mixed fermentation inhibitors found in hot-compressed water-treated lignocellulosic hydrolysate.
    Jayakody LN; Kadowaki M; Tsuge K; Horie K; Suzuki A; Hayashi N; Kitagaki H
    Appl Microbiol Biotechnol; 2015 Jan; 99(1):501-15. PubMed ID: 25359478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Treatment with lignin residue: a novel method for detoxification of lignocellulose hydrolysates.
    Björklund L; Larsson S; Jönsson LJ; Reimann E; Nilvebrant NO
    Appl Biochem Biotechnol; 2002; 98-100():563-75. PubMed ID: 12018282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous saccharification and fermentation of lignocellulosic residues pretreated with phosphoric acid-acetone for bioethanol production.
    Li H; Kim NJ; Jiang M; Kang JW; Chang HN
    Bioresour Technol; 2009 Jul; 100(13):3245-51. PubMed ID: 19289273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibitory activity of carbonyl compounds on alcoholic fermentation by Saccharomyces cerevisiae.
    Cao D; Tu M; Xie R; Li J; Wu Y; Adhikari S
    J Agric Food Chem; 2014 Jan; 62(4):918-26. PubMed ID: 24401115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of benzoquinones in pretreated lignocellulosic feedstocks and inhibitory effects on yeast.
    Stagge S; Cavka A; Jönsson LJ
    AMB Express; 2015 Dec; 5(1):62. PubMed ID: 26384342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and evaluation of lignocellulosic biomass hydrolysates for growth by ethanologenic yeasts.
    Zha Y; Slomp R; van Groenestijn J; Punt PJ
    Methods Mol Biol; 2012; 834():245-59. PubMed ID: 22144364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparisons of five Saccharomyces cerevisiae strains for ethanol production from SPORL-pretreated lodgepole pine.
    Zhou H; Lan T; Dien BS; Hector RE; Zhu JY
    Biotechnol Prog; 2014; 30(5):1076-83. PubMed ID: 24930449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of sulfur oxyanions on lignocellulose-derived fermentation inhibitors.
    Cavka A; Alriksson B; Ahnlund M; Jönsson LJ
    Biotechnol Bioeng; 2011 Nov; 108(11):2592-9. PubMed ID: 21702027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detoxification of lignocellulosic hydrolysates using sodium borohydride.
    Cavka A; Jönsson LJ
    Bioresour Technol; 2013 May; 136():368-76. PubMed ID: 23567704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling microbial contamination during hydrolysis of AFEX-pretreated corn stover and switchgrass: effects on hydrolysate composition, microbial response and fermentation.
    Serate J; Xie D; Pohlmann E; Donald C; Shabani M; Hinchman L; Higbee A; Mcgee M; La Reau A; Klinger GE; Li S; Myers CL; Boone C; Bates DM; Cavalier D; Eilert D; Oates LG; Sanford G; Sato TK; Dale B; Landick R; Piotrowski J; Ong RG; Zhang Y
    Biotechnol Biofuels; 2015; 8():180. PubMed ID: 26583044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fed-batch cultivation of Saccharomyces cerevisiae on lignocellulosic hydrolyzate.
    Petersson A; Lidén G
    Biotechnol Lett; 2007 Feb; 29(2):219-25. PubMed ID: 17091372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High consistency enzymatic hydrolysis of hardwood substrates.
    Zhang X; Qin W; Paice MG; Saddler JN
    Bioresour Technol; 2009 Dec; 100(23):5890-7. PubMed ID: 19643602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Xylose fermentation as a challenge for commercialization of lignocellulosic fuels and chemicals.
    Sànchez Nogué V; Karhumaa K
    Biotechnol Lett; 2015 Apr; 37(4):761-72. PubMed ID: 25522734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of PRS3, RPB4 and ZWF1 to the resistance of industrial Saccharomyces cerevisiae CCUG53310 and PE-2 strains to lignocellulosic hydrolysate-derived inhibitors.
    Cunha JT; Aguiar TQ; Romaní A; Oliveira C; Domingues L
    Bioresour Technol; 2015 Sep; 191():7-16. PubMed ID: 25974617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds.
    Keating JD; Panganiban C; Mansfield SD
    Biotechnol Bioeng; 2006 Apr; 93(6):1196-206. PubMed ID: 16470880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.