These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 26528892)

  • 1. Decarboxylation, CO2 and the reversion problem.
    Kluger R
    Acc Chem Res; 2015 Nov; 48(11):2843-9. PubMed ID: 26528892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decarboxylation without CO2: why bicarbonate forms directly as trichloroacetate is converted to chloroform.
    Howe GW; Kluger R
    J Org Chem; 2014 Nov; 79(22):10972-80. PubMed ID: 25340631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Base-catalyzed decarboxylation of mandelylthiamin: direct formation of bicarbonate as an alternative to formation of CO2.
    Howe GW; Bielecki M; Kluger R
    J Am Chem Soc; 2012 Dec; 134(51):20621-3. PubMed ID: 23215448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon Kinetic Isotope Effects and the Mechanisms of Acid-Catalyzed Decarboxylation of 2,4-Dimethoxybenzoic Acid and CO
    Vandersteen AA; Howe GW; Sherwood Lollar B; Kluger R
    J Am Chem Soc; 2017 Oct; 139(42):15049-15053. PubMed ID: 28982238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Double duty for a conserved glutamate in pyruvate decarboxylase: evidence of the participation in stereoelectronically controlled decarboxylation and in protonation of the nascent carbanion/enamine intermediate .
    Meyer D; Neumann P; Parthier C; Friedemann R; Nemeria N; Jordan F; Tittmann K
    Biochemistry; 2010 Sep; 49(37):8197-212. PubMed ID: 20715795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Breaking bonds with electrons and protons. Models and examples.
    Costentin C; Robert M; Savéant JM; Tard C
    Acc Chem Res; 2014 Jan; 47(1):271-80. PubMed ID: 24016042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accelerating unimolecular decarboxylation by preassociated acid catalysis in thiamin-derived intermediates: implicating Brønsted acids as carbanion traps in enzymes.
    Kluger R; Ikeda G; Hu Q; Cao P; Drewry J
    J Am Chem Soc; 2006 Dec; 128(49):15856-64. PubMed ID: 17147398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proton Transfer via π-Interactions from Pyridine Provides a Facilitated Route for Transfer of CO
    Zambri MA; Kluger R
    J Am Chem Soc; 2024 Jan; 146(2):1403-1409. PubMed ID: 38176895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrolytic decarboxylation of carboxylic acids and the formation of protonated carbonic acid.
    Mundle SO; Lacrampe-Couloume G; Lollar BS; Kluger R
    J Am Chem Soc; 2010 Feb; 132(7):2430-6. PubMed ID: 20121187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon kinetic isotope effects reveal variations in reactivity of intermediates in the formation of protonated carbonic acid.
    Vandersteen AA; Mundle SO; Lacrampe-Couloume G; Sherwood Lollar B; Kluger R
    J Org Chem; 2013 Dec; 78(23):12176-81. PubMed ID: 24256305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalyzing separation of carbon dioxide in thiamin diphosphate-promoted decarboxylation.
    Kluger R; Rathgeber S
    FEBS J; 2008 Dec; 275(24):6089-100. PubMed ID: 19016847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Competing Protonation and Halide Elimination as a Probe of the Character of Thiamin-Derived Reactive Intermediates.
    Bielecki M; Howe GW; Kluger R
    Biochemistry; 2019 Aug; 58(34):3566-3571. PubMed ID: 31385510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water- and acid-mediated excited-state intramolecular proton transfer and decarboxylation reactions of ketoprofen in water-rich and acidic aqueous solutions.
    Li MD; Yeung CS; Guan X; Ma J; Li W; Ma C; Phillips DL
    Chemistry; 2011 Sep; 17(39):10935-50. PubMed ID: 21850720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origin of Free Energy Barriers of Decarboxylation and the Reverse Process of CO
    Zhou S; Nguyen BT; Richard JP; Kluger R; Gao J
    J Am Chem Soc; 2021 Jan; 143(1):137-141. PubMed ID: 33375792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Charge Dispersion and Its Effects on the Reactivity of Thiamin-Derived Breslow Intermediates.
    Bielecki M; Howe GW; Kluger R
    Biochemistry; 2018 Jul; 57(26):3867-3872. PubMed ID: 29856601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Making thiamin work faster: acid-promoted separation of carbon dioxide.
    Hu Q; Kluger R
    J Am Chem Soc; 2005 Sep; 127(35):12242-3. PubMed ID: 16131200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How Acid-Catalyzed Decarboxylation of 2,4-Dimethoxybenzoic Acid Avoids Formation of Protonated CO2.
    Howe GW; Vandersteen AA; Kluger R
    J Am Chem Soc; 2016 Jun; 138(24):7568-73. PubMed ID: 27241436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and kinetic studies on native intermediates and an intermediate analogue in benzoylformate decarboxylase reveal a least motion mechanism with an unprecedented short-lived predecarboxylation intermediate.
    Bruning M; Berheide M; Meyer D; Golbik R; Bartunik H; Liese A; Tittmann K
    Biochemistry; 2009 Apr; 48(15):3258-68. PubMed ID: 19182954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein-enhanced decarboxylation of the covalent intermediate in benzoylformate decarboxylase--Desolvation or acid catalysis?
    Kluger R; Yu D
    Bioorg Chem; 2006 Dec; 34(6):337-44. PubMed ID: 16996103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Internal return of carbon dioxide in decarboxylation: catalysis of separation and 12C/13C kinetic isotope effects.
    Mundle SO; Rathgeber S; Lacrampe-Couloume G; Sherwood Lollar B; Kluger R
    J Am Chem Soc; 2009 Aug; 131(33):11638-9. PubMed ID: 19642680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.