These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 26528892)
21. On the importance of being zwitterionic: enzymatic catalysis of decarboxylation and deprotonation of cationic carbon. Richard JP; Amyes TL Bioorg Chem; 2004 Oct; 32(5):354-66. PubMed ID: 15381401 [TBL] [Abstract][Full Text] [Related]
22. Decarboxylation via addition of water to a carboxyl group: acid catalysis of pyrrole-2-carboxylic acid. Mundle SO; Kluger R J Am Chem Soc; 2009 Aug; 131(33):11674-5. PubMed ID: 19645466 [TBL] [Abstract][Full Text] [Related]
23. Uroporphyrinogen decarboxylation as a benchmark for the catalytic proficiency of enzymes. Lewis CA; Wolfenden R Proc Natl Acad Sci U S A; 2008 Nov; 105(45):17328-33. PubMed ID: 18988736 [TBL] [Abstract][Full Text] [Related]
24. Enzymatic Catalysis of Proton Transfer and Decarboxylation Reactions. Richard JP Pure Appl Chem; 2011 Jul; 83(8):1555-1565. PubMed ID: 23505326 [TBL] [Abstract][Full Text] [Related]
25. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters. Chin YH; Buda C; Neurock M; Iglesia E J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447 [TBL] [Abstract][Full Text] [Related]
26. Synthesis and interconversions of digold(I), tetragold(I), digold(II), gold(I)-gold(III) and digold(III) complexes of fluorine-substituted aryl carbanions. Bennett MA; Bhargava SK; Mirzadeh N; Privér SH; Wagler J; Willis AC Dalton Trans; 2009 Sep; (36):7537-51. PubMed ID: 19727476 [TBL] [Abstract][Full Text] [Related]
27. Gas phase studies of the Pesci decarboxylation reaction: synthesis, structure, and unimolecular and bimolecular reactivity of organometallic ions. O'Hair RA; Rijs NJ Acc Chem Res; 2015 Feb; 48(2):329-40. PubMed ID: 25594228 [TBL] [Abstract][Full Text] [Related]
28. The reactivity of lactyl-oxythiamin implies the role of the amino-pyrimidine in thiamin catalyzed decarboxylation. Heidari Y; Howe GW; Kluger R Bioorg Chem; 2016 Dec; 69():153-158. PubMed ID: 27816798 [TBL] [Abstract][Full Text] [Related]
29. Reversibility and diffusion in mandelythiamin decarboxylation. Searching dynamical effects in decarboxylation reactions. Roca M; Pascual-Ahuir JL; Tuñón I J Am Chem Soc; 2012 Jun; 134(25):10509-14. PubMed ID: 22668129 [TBL] [Abstract][Full Text] [Related]
31. Intermediates and transition states in thiamin diphosphate-dependent decarboxylases. A kinetic and NMR study on wild-type indolepyruvate decarboxylase and variants using indolepyruvate, benzoylformate, and pyruvate as substrates. Schütz A; Golbik R; König S; Hübner G; Tittmann K Biochemistry; 2005 Apr; 44(16):6164-79. PubMed ID: 15835904 [TBL] [Abstract][Full Text] [Related]
32. Proton-coupled electron transfer cleavage of heavy-atom bonds in electrocatalytic processes. Cleavage of a C-O bond in the catalyzed electrochemical reduction of CO2. Costentin C; Drouet S; Passard G; Robert M; Savéant JM J Am Chem Soc; 2013 Jun; 135(24):9023-31. PubMed ID: 23692448 [TBL] [Abstract][Full Text] [Related]
33. Kinetic mechanism and structural requirements of the amine-catalyzed decarboxylation of oxaloacetic acid. Thalji NK; Crowe WE; Waldrop GL J Org Chem; 2009 Jan; 74(1):144-52. PubMed ID: 19035664 [TBL] [Abstract][Full Text] [Related]
34. Phototriggered release of a leaving group in Ketoprofen derivatives via a benzylic carbanion pathway, but not via a biradical pathway. Li MD; Su T; Ma J; Liu M; Liu H; Li X; Phillips DL Chemistry; 2013 Aug; 19(34):11241-50. PubMed ID: 23843287 [TBL] [Abstract][Full Text] [Related]
35. Do dihydroxymagnesium carboxylates form Grignard-type reagents? A theoretical investigation on decarboxylative fragmentation. Ruf A; Kanawati B; Schmitt-Kopplin P J Mol Model; 2018 Mar; 24(4):106. PubMed ID: 29589173 [TBL] [Abstract][Full Text] [Related]
36. Heavy atom isotope effects on the reaction catalyzed by the oxalate decarboxylase from Bacillus subtilis. Reinhardt LA; Svedruzic D; Chang CH; Cleland WW; Richards NG J Am Chem Soc; 2003 Feb; 125(5):1244-52. PubMed ID: 12553826 [TBL] [Abstract][Full Text] [Related]
37. Protonated carbonic acid and reactive intermediates in the acidic decarboxylation of indolecarboxylic acids. Vandersteen AA; Mundle SO; Kluger R J Org Chem; 2012 Aug; 77(15):6505-9. PubMed ID: 22804752 [TBL] [Abstract][Full Text] [Related]
38. N-heterocyclic carbene gold(I) and copper(I) complexes in C-H bond activation. Gaillard S; Cazin CS; Nolan SP Acc Chem Res; 2012 Jun; 45(6):778-87. PubMed ID: 22166092 [TBL] [Abstract][Full Text] [Related]
39. Solvation Induction of Free Energy Barriers of Decarboxylation Reactions in Aqueous Solution from Dual-Level QM/MM Simulations. Zhou S; Wang Y; Gao J JACS Au; 2021 Feb; 1(2):233-244. PubMed ID: 34467287 [TBL] [Abstract][Full Text] [Related]
40. Proton-mediated chemistry and catalysis in a self-assembled supramolecular host. Pluth MD; Bergman RG; Raymond KN Acc Chem Res; 2009 Oct; 42(10):1650-9. PubMed ID: 19591461 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]