These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 26528929)

  • 1. The first report of direct inhibitors that target the C-terminal MEEVD region on heat shock protein 90.
    Buckton LK; Wahyudi H; McAlpine SR
    Chem Commun (Camb); 2016 Jan; 52(3):501-4. PubMed ID: 26528929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein-protein inhibitor designed de novo to target the MEEVD region on the C-terminus of Hsp90 and block co-chaperone activity.
    Rahimi MN; McAlpine SR
    Chem Commun (Camb); 2019 Jan; 55(6):846-849. PubMed ID: 30575826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macrocycles that inhibit the binding between heat shock protein 90 and TPR-containing proteins.
    Ardi VC; Alexander LD; Johnson VA; McAlpine SR
    ACS Chem Biol; 2011 Dec; 6(12):1357-66. PubMed ID: 21950602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential C-terminal-domain inhibitors of heat shock protein 90 derived from a C-terminal peptide helix.
    Gavenonis J; Jonas NE; Kritzer JA
    Bioorg Med Chem; 2014 Aug; 22(15):3989-93. PubMed ID: 24984936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. C-terminal heat shock protein 90 modulators produce desirable oncogenic properties.
    Wang Y; McAlpine SR
    Org Biomol Chem; 2015 Apr; 13(16):4627-31. PubMed ID: 25711919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hsp90 is a direct target of the anti-allergic drugs disodium cromoglycate and amlexanox.
    Okada M; Itoh H; Hatakeyama T; Tokumitsu H; Kobayashi R
    Biochem J; 2003 Sep; 374(Pt 2):433-41. PubMed ID: 12803546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reinventing Hsp90 Inhibitors: Blocking C-Terminal Binding Events to Hsp90 by Using Dimerized Inhibitors.
    Koay YC; Wahyudi H; McAlpine SR
    Chemistry; 2016 Dec; 22(51):18572-18582. PubMed ID: 27859703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural studies on the co-chaperone Hop and its complexes with Hsp90.
    Onuoha SC; Coulstock ET; Grossmann JG; Jackson SE
    J Mol Biol; 2008 Jun; 379(4):732-44. PubMed ID: 18485364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molybdate inhibits hsp90, induces structural changes in its C-terminal domain, and alters its interactions with substrates.
    Hartson SD; Thulasiraman V; Huang W; Whitesell L; Matts RL
    Biochemistry; 1999 Mar; 38(12):3837-49. PubMed ID: 10090774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novobiocin induces a distinct conformation of Hsp90 and alters Hsp90-cochaperone-client interactions.
    Yun BG; Huang W; Leach N; Hartson SD; Matts RL
    Biochemistry; 2004 Jun; 43(25):8217-29. PubMed ID: 15209518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural models and binding site prediction of the C-terminal domain of human Hsp90: a new target for anticancer drugs.
    Sgobba M; Degliesposti G; Ferrari AM; Rastelli G
    Chem Biol Drug Des; 2008 May; 71(5):420-433. PubMed ID: 18373550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational dynamics of the molecular chaperone Hsp90 in complexes with a co-chaperone and anticancer drugs.
    Phillips JJ; Yao ZP; Zhang W; McLaughlin S; Laue ED; Robinson CV; Jackson SE
    J Mol Biol; 2007 Oct; 372(5):1189-203. PubMed ID: 17764690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel C-terminal homologue of Aha1 co-chaperone binds to heat shock protein 90 and stimulates its ATPase activity in Entamoeba histolytica.
    Singh M; Shah V; Tatu U
    J Mol Biol; 2014 Apr; 426(8):1786-98. PubMed ID: 24486610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular characterization and expression of a gene encoding cytosolic Hsp90 from Pennisetum glaucum and its role in abiotic stress adaptation.
    Reddy PS; Thirulogachandar V; Vaishnavi CS; Aakrati A; Sopory SK; Reddy MK
    Gene; 2011 Mar; 474(1-2):29-38. PubMed ID: 21185362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and biological testing of peptidic dimerization inhibitors of human Hsp90 that target the C-terminal domain.
    Bopp B; Ciglia E; Ouald-Chaib A; Groth G; Gohlke H; Jose J
    Biochim Biophys Acta; 2016 Jun; 1860(6):1043-55. PubMed ID: 26774645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and synthesis of Hsp90 inhibitors: exploring the SAR of Sansalvamide A derivatives.
    Sellers RP; Alexander LD; Johnson VA; Lin CC; Savage J; Corral R; Moss J; Slugocki TS; Singh EK; Davis MR; Ravula S; Spicer JE; Oelrich JL; Thornquist A; Pan CM; McAlpine SR
    Bioorg Med Chem; 2010 Sep; 18(18):6822-56. PubMed ID: 20708938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elucidation of the Hsp90 C-terminal inhibitor binding site.
    Matts RL; Dixit A; Peterson LB; Sun L; Voruganti S; Kalyanaraman P; Hartson SD; Verkhivker GM; Blagg BS
    ACS Chem Biol; 2011 Aug; 6(8):800-7. PubMed ID: 21548602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting the hydrophobic region of Hsp90's ATP binding pocket with novel 1,3,5-triazines.
    Lee T; Seo YH
    Bioorg Med Chem Lett; 2013 Dec; 23(23):6427-31. PubMed ID: 24125885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining an Hsp70 inhibitor with either an N- or C-terminal Hsp90 inhibitor produces mechanistically distinct phenotypes.
    Wang Y; McAlpine SR
    Org Biomol Chem; 2015 Mar; 13(12):3691-8. PubMed ID: 25679754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure insights into mechanisms of ATP hydrolysis and the activation of human heat-shock protein 90.
    Li J; Sun L; Xu C; Yu F; Zhou H; Zhao Y; Zhang J; Cai J; Mao C; Tang L; Xu Y; He J
    Acta Biochim Biophys Sin (Shanghai); 2012 Apr; 44(4):300-6. PubMed ID: 22318716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.