These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
61 related articles for article (PubMed ID: 26528929)
41. First Structural View of a Peptide Interacting with the Nucleotide Binding Domain of Heat Shock Protein 90. Raman S; Singh M; Tatu U; Suguna K Sci Rep; 2015 Nov; 5():17015. PubMed ID: 26599366 [TBL] [Abstract][Full Text] [Related]
42. The Effects of Hsp90α1 Mutations on Myosin Thick Filament Organization. He Q; Liu K; Tian Z; Du SJ PLoS One; 2015; 10(11):e0142573. PubMed ID: 26562659 [TBL] [Abstract][Full Text] [Related]
43. Synthesis and Biological Activity of 3-(Heteroaryl)quinolin-2(1 Larghi EL; Bruneau A; Sauvage F; Alami M; Vergnaud-Gauduchon J; Messaoudi S Molecules; 2022 Jan; 27(2):. PubMed ID: 35056725 [TBL] [Abstract][Full Text] [Related]
44. Improvement on Permeability of Cyclic Peptide/Peptidomimetic: Backbone Li Y; Li W; Xu Z Mar Drugs; 2021 May; 19(6):. PubMed ID: 34072121 [TBL] [Abstract][Full Text] [Related]
45. De Novo Design, Synthesis, and Mechanistic Evaluation of Short Peptides That Mimic Heat Shock Protein 27 Activity. Kho J; Pham PC; Kwon S; Huang AY; Rivers JP; Wang H; Ecroyd H; Donald WA; McAlpine SR ACS Med Chem Lett; 2021 May; 12(5):713-719. PubMed ID: 34055216 [TBL] [Abstract][Full Text] [Related]
46. Using NMR to identify binding regions for N and C-terminal Hsp90 inhibitors using Hsp90 domains. McConnell JR; Dyson HJ; McAlpine SR RSC Med Chem; 2021 Mar; 12(3):410-415. PubMed ID: 33898992 [TBL] [Abstract][Full Text] [Related]
47. Solution structure of the Hop TPR2A domain and investigation of target druggability by NMR, biochemical and in silico approaches. Darby JF; Vidler LR; Simpson PJ; Al-Lazikani B; Matthews SJ; Sharp SY; Pearl LH; Hoelder S; Workman P Sci Rep; 2020 Sep; 10(1):16000. PubMed ID: 32994435 [TBL] [Abstract][Full Text] [Related]
48. Delivering bioactive cyclic peptides that target Hsp90 as prodrugs. Huo Y; Buckton LK; Bennett JL; Smith EC; Byrne FL; Hoehn KL; Rahimi MN; McAlpine SR J Enzyme Inhib Med Chem; 2019 Dec; 34(1):728-739. PubMed ID: 30822267 [TBL] [Abstract][Full Text] [Related]
49. Synthesis and Structure-Activity Relationships of Inhibitors That Target the C-Terminal MEEVD on Heat Shock Protein 90. Rahimi MN; Buckton LK; Zaiter SS; Kho J; Chan V; Guo A; Konesan J; Kwon S; Lam LKO; Lawler MF; Leong M; Moldovan GD; Neale DA; Thornton G; McAlpine SR ACS Med Chem Lett; 2018 Feb; 9(2):73-77. PubMed ID: 30555625 [TBL] [Abstract][Full Text] [Related]
50. Gambogic acid identifies an isoform-specific druggable pocket in the middle domain of Hsp90β. Yim KH; Prince TL; Qu S; Bai F; Jennings PA; Onuchic JN; Theodorakis EA; Neckers L Proc Natl Acad Sci U S A; 2016 Aug; 113(33):E4801-9. PubMed ID: 27466407 [TBL] [Abstract][Full Text] [Related]
51. The first report of direct inhibitors that target the C-terminal MEEVD region on heat shock protein 90. Buckton LK; Wahyudi H; McAlpine SR Chem Commun (Camb); 2016 Jan; 52(3):501-4. PubMed ID: 26528929 [TBL] [Abstract][Full Text] [Related]
52. Protein-protein inhibitor designed de novo to target the MEEVD region on the C-terminus of Hsp90 and block co-chaperone activity. Rahimi MN; McAlpine SR Chem Commun (Camb); 2019 Jan; 55(6):846-849. PubMed ID: 30575826 [TBL] [Abstract][Full Text] [Related]
53. Macrocycles that inhibit the binding between heat shock protein 90 and TPR-containing proteins. Ardi VC; Alexander LD; Johnson VA; McAlpine SR ACS Chem Biol; 2011 Dec; 6(12):1357-66. PubMed ID: 21950602 [TBL] [Abstract][Full Text] [Related]
54. Potential C-terminal-domain inhibitors of heat shock protein 90 derived from a C-terminal peptide helix. Gavenonis J; Jonas NE; Kritzer JA Bioorg Med Chem; 2014 Aug; 22(15):3989-93. PubMed ID: 24984936 [TBL] [Abstract][Full Text] [Related]
55. C-terminal heat shock protein 90 modulators produce desirable oncogenic properties. Wang Y; McAlpine SR Org Biomol Chem; 2015 Apr; 13(16):4627-31. PubMed ID: 25711919 [TBL] [Abstract][Full Text] [Related]