These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 26529234)

  • 1. A Strontium-Modified Titanium Surface Produced by a New Method and Its Biocompatibility In Vitro.
    Liu C; Zhang Y; Wang L; Zhang X; Chen Q; Wu B
    PLoS One; 2015; 10(11):e0140669. PubMed ID: 26529234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Characterization and Osteogenic Activity of Nanostructured Strontium-Containing Oxide Layers on Titanium Surfaces.
    Chen Y; Chen XY; Shen JW; He FM; Liu W
    Int J Oral Maxillofac Implants; 2016; 31(4):e102-15. PubMed ID: 27447164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced osteoblast response to hydrophilic strontium and/or phosphate ions-incorporated titanium oxide surfaces.
    Park JW; Kim YJ; Jang JH
    Clin Oral Implants Res; 2010 Apr; 21(4):398-408. PubMed ID: 20128830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Incorporation of Strontium in a Sodium Alginate Coating on Titanium Surfaces for Improved Biological Properties.
    Yuan N; Jia L; Geng Z; Wang R; Li Z; Yang X; Cui Z; Zhu S; Liang Y; Liu Y
    Biomed Res Int; 2017; 2017():9867819. PubMed ID: 29109961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced biocompatibility and osteogenic differentiation of mesenchymal stem cells of titanium by Sr-Ga clavate double hydroxides.
    Chen M; Tao B; Hu Y; Li M; Chen M; Tan L; Luo Z; Cai K
    J Mater Chem B; 2021 Aug; 9(30):6029-6036. PubMed ID: 34259279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced in-vitro osteoblastic functions on β-type titanium alloy using surface mechanical attrition treatment.
    Huang R; Zhang L; Huang L; Zhu J
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():688-697. PubMed ID: 30678957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteoblast response and osseointegration of a Ti-6Al-4V alloy implant incorporating strontium.
    Park JW; Kim HK; Kim YJ; Jang JH; Song H; Hanawa T
    Acta Biomater; 2010 Jul; 6(7):2843-51. PubMed ID: 20085830
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Okuzu Y; Fujibayashi S; Yamaguchi S; Masamoto K; Otsuki B; Goto K; Kawai T; Shimizu T; Morizane K; Kawata T; Shimizu Y; Hayashi M; Matsuda S
    J Biomater Appl; 2021 Jan; 35(6):670-680. PubMed ID: 32954894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osteogenic differentiation of mesenchymal stem cells modulated by a chemically modified super-hydrophilic titanium implant surface.
    Kwon YS; Park JW
    J Biomater Appl; 2018 Aug; 33(2):205-215. PubMed ID: 29984615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteogenic capability of strontium and icariin-loaded TiO
    Zhu Y; Zheng T; Wen LM; Li R; Zhang YB; Bi WJ; Feng XJ; Qi MC
    J Biomater Appl; 2021 Apr; 35(9):1119-1131. PubMed ID: 33632004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteogenesis of rat mesenchymal stem cells and osteoblastic cells on strontium-doped nanohydroxyapatite-coated titanium surfaces.
    Jiang QH; Gong X; Wang XX; He FM
    Int J Oral Maxillofac Implants; 2015; 30(2):461-71. PubMed ID: 25830407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of a Strontium-Loaded, Phase-Transited Lysozyme Coating to a Titanium Surface to Enhance Osteogenesis and Osteoimmunomodulation.
    Lu X; Zhang W; Liu Z; Ma S; Sun Y; Wu X; Zhang X; Gao P
    Med Sci Monit; 2019 Apr; 25():2658-2671. PubMed ID: 30973161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antibacterial ability and osteogenic activity of porous Sr/Ag-containing TiO2 coatings.
    He X; Zhang X; Bai L; Hang R; Huang X; Qin L; Yao X; Tang B
    Biomed Mater; 2016 Aug; 11(4):045008. PubMed ID: 27508428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strontium (Sr) and silver (Ag) loaded nanotubular structures with combined osteoinductive and antimicrobial activities.
    Cheng H; Xiong W; Fang Z; Guan H; Wu W; Li Y; Zhang Y; Alvarez MM; Gao B; Huo K; Xu J; Xu N; Zhang C; Fu J; Khademhosseini A; Li F
    Acta Biomater; 2016 Feb; 31():388-400. PubMed ID: 26612413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro study on cytocompatibility and osteogenesis ability of Ti-Cu alloy.
    Liu R; Ma Z; Kunle Kolawole S; Zeng L; Zhao Y; Ren L; Yang K
    J Mater Sci Mater Med; 2019 Jun; 30(7):75. PubMed ID: 31218519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of strontium-incorporated protein supramolecular nanofilm on titanium substrates for promoting osteogenesis.
    Ding Y; Yuan Z; Liu P; Cai K; Liu R
    Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110851. PubMed ID: 32279772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative in vivo study of strontium-functionalized and SLActive™ implant surfaces in early bone healing.
    Offermanns V; Andersen OZ; Sillassen M; Almtoft KP; Andersen IH; Kloss F; Foss M
    Int J Nanomedicine; 2018; 13():2189-2197. PubMed ID: 29692613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Titania (TiO
    Bhattacharjee A; Pereira B; Soares P; Popat KC
    Nanoscale; 2024 Jul; 16(26):12510-12522. PubMed ID: 38874593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biofunctional Sr- and Si-loaded titania nanotube coating of Ti surfaces by anodization-hydrothermal process.
    Huang Y; Shen X; Qiao H; Yang H; Zhang X; Liu Y; Yang H
    Int J Nanomedicine; 2018; 13():633-640. PubMed ID: 29440890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled release of strontium ions from a bioactive Ti metal with a Ca-enriched surface layer.
    Yamaguchi S; Nath S; Matsushita T; Kokubo T
    Acta Biomater; 2014 May; 10(5):2282-9. PubMed ID: 24486909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.