These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 26529301)

  • 1. Biodegradation of phenol, salicylic acid, benzenesulfonic acid, and iomeprol by Pseudomonas fluorescens in the capillary fringe.
    Hack N; Reinwand C; Abbt-Braun G; Horn H; Frimmel FH
    J Contam Hydrol; 2015 Dec; 183():40-54. PubMed ID: 26529301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradation of phenol by bacterial strains from petroleum-refining wastewater purification plant.
    Pakuła A; Bieszkiewicz E; Boszczyk-Maleszak H; Mycielski R
    Acta Microbiol Pol; 1999; 48(4):373-80. PubMed ID: 10756720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fringe-controlled biodegradation under dynamic conditions: quasi 2-D flow-through experiments and reactive-transport modeling.
    Eckert D; Kürzinger P; Bauer R; Griebler C; Cirpka OA
    J Contam Hydrol; 2015 Jan; 172():100-11. PubMed ID: 25496820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of surface-active solutes on water flow and contaminant transport in variably saturated porous media with capillary fringe effects.
    Henry EJ; Smith JE
    J Contam Hydrol; 2002 Jun; 56(3-4):247-70. PubMed ID: 12102321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural Attenuation of Nonvolatile Contaminants in the Capillary Fringe.
    Kurt Z; Mack EE; Spain JC
    Environ Sci Technol; 2016 Sep; 50(18):10172-8. PubMed ID: 27523982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactive transport of iomeprol during stream-groundwater interactions.
    Engelhardt I; Prommer H; Schulz M; Vanderborght J; Schüth C; Ternes TA
    Environ Sci Technol; 2014; 48(1):199-207. PubMed ID: 24274631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of heterogeneity on oxygen transfer in a fluctuating capillary fringe.
    Haberer CM; Rolle M; Cirpka OA; Grathwohl P
    Ground Water; 2015; 53(1):57-70. PubMed ID: 24341670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Illuminating reactive microbial transport in saturated porous media: demonstration of a visualization method and conceptual transport model.
    Oates PM; Castenson C; Harvey CF; Polz M; Culligan P
    J Contam Hydrol; 2005 May; 77(4):233-45. PubMed ID: 15854718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A high-resolution non-invasive approach to quantify oxygen transport across the capillary fringe and within the underlying groundwater.
    Haberer CM; Rolle M; Liu S; Cirpka OA; Grathwohl P
    J Contam Hydrol; 2011 Mar; 122(1-4):26-39. PubMed ID: 21131093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradation potential of MTBE in a fractured chalk aquifer under aerobic conditions in long-term uncontaminated and contaminated aquifer microcosms.
    Shah NW; Thornton SF; Bottrell SH; Spence MJ
    J Contam Hydrol; 2009 Jan; 103(3-4):119-33. PubMed ID: 19008014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of high strength phenol degradation using Bacillus brevis.
    Arutchelvan V; Kanakasabai V; Elangovan R; Nagarajan S; Muralikrishnan V
    J Hazard Mater; 2006 Feb; 129(1-3):216-22. PubMed ID: 16203081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradation of vapor-phase toluene in unsaturated porous media: Column experiments.
    Khan AM; Wick LY; Harms H; Thullner M
    Environ Pollut; 2016 Apr; 211():325-31. PubMed ID: 26774779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contaminant concentration versus flow velocity: drivers of biodegradation and microbial growth in groundwater model systems.
    Grösbacher M; Eckert D; Cirpka OA; Griebler C
    Biodegradation; 2018 Jun; 29(3):211-232. PubMed ID: 29492777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical modeling analysis of VOC removal processes in different aerobic vertical flow systems for groundwater remediation.
    De Biase C; Carminati A; Oswald SE; Thullner M
    J Contam Hydrol; 2013 Nov; 154():53-69. PubMed ID: 24090736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical study of variable-density flow and transport in unsaturated-saturated porous media.
    Liu Y; Kuang X; Jiao JJ; Li J
    J Contam Hydrol; 2015 Nov; 182():117-30. PubMed ID: 26379086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degrading high-strength phenol using aerobic granular sludge.
    Ho KL; Chen YY; Lin B; Lee DJ
    Appl Microbiol Biotechnol; 2010 Feb; 85(6):2009-15. PubMed ID: 19902206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance of the hybrid growth sequencing batch reactor (HG-SBR) for biodegradation of phenol under various toxicity conditions.
    Yusoff N; Ong SA; Ho LN; Wong YS; Saad FNM; Khalik W; Lee SL
    J Environ Sci (China); 2019 Jan; 75():64-72. PubMed ID: 30473308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradation of phenol by Pseudomonas putida immobilized in polyvinyl alcohol (PVA) gel.
    El-Naas MH; Al-Muhtaseb SA; Makhlouf S
    J Hazard Mater; 2009 May; 164(2-3):720-5. PubMed ID: 18829170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling aerobic biodegradation in the capillary fringe.
    Luo J; Kurt Z; Hou D; Spain JC
    Environ Sci Technol; 2015 Feb; 49(3):1501-10. PubMed ID: 25548946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling capillary fringe effect on petroleum vapor intrusion from groundwater contamination.
    Yao Y; Mao F; Xiao Y; Luo J
    Water Res; 2019 Mar; 150():111-119. PubMed ID: 30508708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.