These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 26529390)

  • 21. Phenotypic characterization of mononuclear cells following anorganic bovine bone implantation in rats.
    Cohen RE; Mullarky RH; Noble B; Comeau RL; Neiders ME
    J Periodontol; 1994 Nov; 65(11):1008-15. PubMed ID: 7853123
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Studies the alterations of biochemical and mineral contents in bone tissue of mus musculus due to aluminum toxicity and the protective action of desferrioxamine and deferiprone by FTIR, ICP-OES, SEM and XRD techniques.
    Sivakumar S; Khatiwada CP; Sivasubramanian J
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 May; 126():59-67. PubMed ID: 24583473
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Study on preparation and physicochemical properties of surface modified sintered bone].
    Li J; Zheng Q; Guo X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Jun; 29(3):474-8. PubMed ID: 22826943
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of the mechanical and ultrastructural properties of heat-treated cortical bone for use as a bone substitute.
    Catanese J; Featherstone JD; Keaveny TM
    J Biomed Mater Res; 1999 Jun; 45(4):327-36. PubMed ID: 10321705
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultrafine heat-induced structural perturbations of bone mineral at the individual nanocrystal level.
    Verezhak M; Rauch EF; Véron M; Lancelon-Pin C; Putaux JL; Plazanet M; Gourrier A
    Acta Biomater; 2018 Jun; 73():500-508. PubMed ID: 29649638
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High temperature-treated bovine porous hydroxyapatite in sinus augmentation procedures: a case report.
    Testori T; Iezzi G; Manzon L; Fratto G; Piattelli A; Weinstein RL
    Int J Periodontics Restorative Dent; 2012 Jun; 32(3):295-301. PubMed ID: 22408774
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A bioactive and bioresorbable porous cubic composite scaffold loaded with bone marrow aspirate: a potential alternative to autogenous bone grafting.
    Tanaka K; Takemoto M; Fujibayashi S; Neo M; Shikinami Y; Nakamura T
    Spine (Phila Pa 1976); 2011 Mar; 36(6):441-7. PubMed ID: 21124263
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bone augmentation using a highly porous PLGA/β-TCP scaffold containing fibroblast growth factor-2.
    Yoshida T; Miyaji H; Otani K; Inoue K; Nakane K; Nishimura H; Ibara A; Shimada A; Ogawa K; Nishida E; Sugaya T; Sun L; Fugetsu B; Kawanami M
    J Periodontal Res; 2015 Apr; 50(2):265-73. PubMed ID: 24966062
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Technetium-99m bone imaging and mechanical strength test on heterogenous inorganic bone implantation].
    Li JW; Hu YS
    Zhonghua Zheng Xing Shao Shang Wai Ke Za Zhi; 1993 Jul; 9(4):286-8, 319. PubMed ID: 8221332
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vivo evaluation of a porous hydroxyapatite/poly-DL-lactide composite for bone tissue engineering.
    Hasegawa S; Neo M; Tamura J; Fujibayashi S; Takemoto M; Shikinami Y; Okazaki K; Nakamura T
    J Biomed Mater Res A; 2007 Jun; 81(4):930-8. PubMed ID: 17252547
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of plasma chemical oxidation of titanium alloy on bone-implant contact in rats.
    Diefenbeck M; Mückley T; Schrader C; Schmidt J; Zankovych S; Bossert J; Jandt KD; Faucon M; Finger U
    Biomaterials; 2011 Nov; 32(32):8041-7. PubMed ID: 21840591
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Macroporous hydroxyapatite scaffolds for bone tissue engineering applications: physicochemical characterization and assessment of rat bone marrow stromal cell viability.
    Oliveira JM; Silva SS; Malafaya PB; Rodrigues MT; Kotobuki N; Hirose M; Gomes ME; Mano JF; Ohgushi H; Reis RL
    J Biomed Mater Res A; 2009 Oct; 91(1):175-86. PubMed ID: 18780358
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Spinal fusion of lumbar intertransverse process by using tissue engineered bone with xenogeneic deproteinized cancellous bone as scaffold].
    Gao C; Li Q; Jian Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):115-9. PubMed ID: 17357455
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improving the osteointegration and bone-implant interface by incorporation of bioactive particles in sol-gel coatings of stainless steel implants.
    Ballarre J; Manjubala I; Schreiner WH; Orellano JC; Fratzl P; Ceré S
    Acta Biomater; 2010 Apr; 6(4):1601-9. PubMed ID: 19835999
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydroxyapatite-TiO(2)-based nanocomposites synthesized in supercritical CO(2) for bone tissue engineering: physical and mechanical properties.
    Salarian M; Xu WZ; Wang Z; Sham TK; Charpentier PA
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16918-31. PubMed ID: 25184699
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Preparation and characterization of bovine bone collagen matrix].
    He C; Wang Y; Yang L; Pan J; Xia L; Zhang J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Aug; 22(4):698-703. PubMed ID: 16156253
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of hydrazine deproteination on bone mineral phase: a critical view.
    Bertazzo S; Bertran CA
    J Inorg Biochem; 2008 Jan; 102(1):137-45. PubMed ID: 17850876
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bone tissue engineering using porous carbonate apatite and bone marrow cells.
    Kasai T; Sato K; Kanematsu Y; Shikimori M; Kanematsu N; Doi Y
    J Craniofac Surg; 2010 Mar; 21(2):473-8. PubMed ID: 20489453
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Developing porosity of poly(propylene glycol-co-fumaric acid) bone graft substitutes and the effect on osteointegration: a preliminary histology study in rats.
    Lewandrowski KU; Gresser JD; Bondre S; Silva AE; Wise DL; Trantolo DJ
    J Biomater Sci Polym Ed; 2000; 11(8):879-89. PubMed ID: 11211098
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biodegradation behavior of various calcium phosphate materials in bone tissue.
    Klein CP; Driessen AA; de Groot K; van den Hooff A
    J Biomed Mater Res; 1983 Sep; 17(5):769-84. PubMed ID: 6311838
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.