These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 26529575)

  • 1. A linear free energy analysis of PAMPA models for biological systems.
    He J; Abraham MH; Acree WE; Zhao YH
    Int J Pharm; 2015 Dec; 496(2):717-22. PubMed ID: 26529575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PAMPA--a drug absorption in vitro model 13. Chemical selectivity due to membrane hydrogen bonding: in combo comparisons of HDM-, DOPC-, and DS-PAMPA models.
    Avdeef A; Tsinman O
    Eur J Pharm Sci; 2006 May; 28(1-2):43-50. PubMed ID: 16476536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In silico prediction of human oral absorption based on QSAR analyses of PAMPA permeability.
    Akamatsu M; Fujikawa M; Nakao K; Shimizu R
    Chem Biodivers; 2009 Nov; 6(11):1845-66. PubMed ID: 19937826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. QSAR study on permeability of hydrophobic compounds with artificial membranes.
    Fujikawa M; Nakao K; Shimizu R; Akamatsu M
    Bioorg Med Chem; 2007 Jun; 15(11):3756-67. PubMed ID: 17418579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human skin permeation and partition: general linear free-energy relationship analyses.
    Abraham MH; Martins F
    J Pharm Sci; 2004 Jun; 93(6):1508-23. PubMed ID: 15124209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of biopartitioning micellar chromatography and immobilized artificial membrane column for in silico and in vitro determination of blood-brain barrier penetration of phenols.
    Stępnik KE; Malinowska I
    J Chromatogr A; 2013 Apr; 1286():127-36. PubMed ID: 23506703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parallel artificial membrane permeability assay: a new membrane for the fast prediction of passive human skin permeability.
    Ottaviani G; Martel S; Carrupt PA
    J Med Chem; 2006 Jun; 49(13):3948-54. PubMed ID: 16789751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of various PAMPA models to identify the most discriminating method for the prediction of BBB permeability.
    Mensch J; Melis A; Mackie C; Verreck G; Brewster ME; Augustijns P
    Eur J Pharm Biopharm; 2010 Mar; 74(3):495-502. PubMed ID: 20067834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of the in vitro permeation of niacinamide in mammalian skin and in the Parallel Artificial Membrane Permeation Assay (PAMPA) model.
    Zhang Y; Lane ME; Hadgraft J; Heinrich M; Chen T; Lian G; Sinko B
    Int J Pharm; 2019 Feb; 556():142-149. PubMed ID: 30529662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linear free energy relationship analysis of permeability across polydimethylsiloxane (PDMS) membranes and comparison with human skin permeation in vitro.
    Liu X; Zhang K; Abraham MH
    Eur J Pharm Sci; 2018 Oct; 123():524-530. PubMed ID: 30107227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico and in vitro filters for the fast estimation of skin permeation and distribution of new chemical entities.
    Ottaviani G; Martel S; Carrupt PA
    J Med Chem; 2007 Feb; 50(4):742-8. PubMed ID: 17300161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human skin permeation of neutral species and ionic species: extended linear free-energy relationship analyses.
    Zhang K; Chen M; Scriba GK; Abraham MH; Fahr A; Liu X
    J Pharm Sci; 2012 Jun; 101(6):2034-44. PubMed ID: 22415339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of skin permeability of drugs. I. Comparison with artificial membrane.
    Hatanaka T; Inuma M; Sugibayashi K; Morimoto Y
    Chem Pharm Bull (Tokyo); 1990 Dec; 38(12):3452-9. PubMed ID: 2092945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Permeability test for transdermal and local therapeutic patches using Skin PAMPA method.
    Vizserálek G; Berkó S; Tóth G; Balogh R; Budai-Szűcs M; Csányi E; Sinkó B; Takács-Novák K
    Eur J Pharm Sci; 2015 Aug; 76():165-72. PubMed ID: 25957747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial membrane assays to assess permeability.
    Faller B
    Curr Drug Metab; 2008 Nov; 9(9):886-92. PubMed ID: 18991585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PAMPA study of the temperature effect on permeability.
    Vizserálek G; Balogh T; Takács-Novák K; Sinkó B
    Eur J Pharm Sci; 2014 Mar; 53():45-9. PubMed ID: 24361474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting both passive intestinal absorption and the dissociation constant toward albumin using the PAMPA technique.
    Bujard A; Sol M; Carrupt PA; Martel S
    Eur J Pharm Sci; 2014 Oct; 63():36-44. PubMed ID: 25008117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Skin-PAMPA: a new method for fast prediction of skin penetration.
    Sinkó B; Garrigues TM; Balogh GT; Nagy ZK; Tsinman O; Avdeef A; Takács-Novák K
    Eur J Pharm Sci; 2012 Apr; 45(5):698-707. PubMed ID: 22326705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative study of the in vitro permeation of 2-phenoxyethanol in the skin PAMPA model and mammalian skin.
    Rahma A; Lane ME; Sinkó B
    Int J Pharm; 2023 Mar; 635():122692. PubMed ID: 36758884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Descriptors for ions and ion-pairs for use in linear free energy relationships.
    Abraham MH; Acree WE
    J Chromatogr A; 2016 Jan; 1430():2-14. PubMed ID: 26189671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.