These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 26529682)

  • 1. Ultrafine Iron Pyrite (FeS₂) Nanocrystals Improve Sodium-Sulfur and Lithium-Sulfur Conversion Reactions for Efficient Batteries.
    Douglas A; Carter R; Oakes L; Share K; Cohn AP; Pint CL
    ACS Nano; 2015 Nov; 9(11):11156-65. PubMed ID: 26529682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyrite (FeS2) nanocrystals as inexpensive high-performance lithium-ion cathode and sodium-ion anode materials.
    Walter M; Zünd T; Kovalenko MV
    Nanoscale; 2015 May; 7(20):9158-63. PubMed ID: 25941034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transitional Metal Catalytic Pyrite Cathode Enables Ultrastable Four-Electron-Based All-Solid-State Lithium Batteries.
    Wan H; Liu G; Li Y; Weng W; Mwizerwa JP; Tian Z; Chen L; Yao X
    ACS Nano; 2019 Aug; 13(8):9551-9560. PubMed ID: 31398005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Sulfur Transformation by Multifunctional FeS
    Xi K; He D; Harris C; Wang Y; Lai C; Li H; Coxon PR; Ding S; Wang C; Kumar RV
    Adv Sci (Weinh); 2019 Mar; 6(6):1800815. PubMed ID: 30937253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of Iron Sulfide Nanoparticle Sizes in Solid-State Batteries*.
    Dewald GF; Liaqat Z; Lange MA; Tremel W; Zeier WG
    Angew Chem Int Ed Engl; 2021 Aug; 60(33):17952-17956. PubMed ID: 34129261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is the Solid Electrolyte Interphase an Extra-Charge Reservoir in Li-Ion Batteries?
    Rezvani SJ; Gunnella R; Witkowska A; Mueller F; Pasqualini M; Nobili F; Passerini S; Cicco AD
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4570-4576. PubMed ID: 28084724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-purity iron pyrite (FeS2) nanowires as high-capacity nanostructured cathodes for lithium-ion batteries.
    Li L; Cabán-Acevedo M; Girard SN; Jin S
    Nanoscale; 2014 Feb; 6(4):2112-8. PubMed ID: 24441761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon Quantum Dot Surface-Engineered VO2 Interwoven Nanowires: A Flexible Cathode Material for Lithium and Sodium Ion Batteries.
    Balogun MS; Luo Y; Lyu F; Wang F; Yang H; Li H; Liang C; Huang M; Huang Y; Tong Y
    ACS Appl Mater Interfaces; 2016 Apr; 8(15):9733-44. PubMed ID: 27028048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conversion reaction mechanisms in lithium ion batteries: study of the binary metal fluoride electrodes.
    Wang F; Robert R; Chernova NA; Pereira N; Omenya F; Badway F; Hua X; Ruotolo M; Zhang R; Wu L; Volkov V; Su D; Key B; Whittingham MS; Grey CP; Amatucci GG; Zhu Y; Graetz J
    J Am Chem Soc; 2011 Nov; 133(46):18828-36. PubMed ID: 21894971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Li2S Nanocrystals Confined in Free-Standing Carbon Paper for High Performance Lithium-Sulfur Batteries.
    Wu M; Cui Y; Fu Y
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21479-86. PubMed ID: 26349017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unraveling the Beneficial Microstructure Evolution in Pyrite for Boosted Lithium Storage Performance.
    Wang J; Qin J; Jiang Y; Mao B; Wang X; Cao M
    Chemistry; 2020 Sep; 26(51):11841-11850. PubMed ID: 32459869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrafine aluminum sulfide nanocrystals anchored on two-dimensional carbon sheets for high-performance lithium-ion batteries.
    Wang S; Wang T; Kong X; Zhao X; Gan H; Wang X; Meng Q; He F; Yang P; Liu Z
    J Colloid Interface Sci; 2023 Jan; 630(Pt A):204-211. PubMed ID: 36242880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sulfur-Embedded FeS
    Mwizerwa JP; Zhang Q; Han F; Wan H; Cai L; Wang C; Yao X
    ACS Appl Mater Interfaces; 2020 Apr; 12(16):18519-18525. PubMed ID: 32216290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of the Oxidation End-Product Toward Polysulfides-Free and Sustainable Lithium-Pyrite Thermal Batteries.
    Jin Y; Lu H; Lyu N; Zhang D; Jiang X; Sun B; Liu K; Wu H
    Adv Sci (Weinh); 2023 Feb; 10(6):e2205888. PubMed ID: 36603164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversible conversion-alloying of Sb2O3 as a high-capacity, high-rate, and durable anode for sodium ion batteries.
    Hu M; Jiang Y; Sun W; Wang H; Jin C; Yan M
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):19449-55. PubMed ID: 25329758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust Pitaya-Structured Pyrite as High Energy Density Cathode for High-Rate Lithium Batteries.
    Xu X; Liu J; Liu Z; Shen J; Hu R; Liu J; Ouyang L; Zhang L; Zhu M
    ACS Nano; 2017 Sep; 11(9):9033-9040. PubMed ID: 28813140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the effect of a fluorinated ether on the performance of lithium-sulfur batteries.
    Azimi N; Xue Z; Bloom I; Gordin ML; Wang D; Daniel T; Takoudis C; Zhang Z
    ACS Appl Mater Interfaces; 2015 May; 7(17):9169-77. PubMed ID: 25866861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries.
    Tu Z; Nath P; Lu Y; Tikekar MD; Archer LA
    Acc Chem Res; 2015 Nov; 48(11):2947-56. PubMed ID: 26496667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity.
    Peng C; Chen B; Qin Y; Yang S; Li C; Zuo Y; Liu S; Yang J
    ACS Nano; 2012 Feb; 6(2):1074-81. PubMed ID: 22224549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.