BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 26529769)

  • 1. Fertilization of Mouse Gametes in Vitro Using a Digital Microfluidic System.
    Huang HY; Shen HH; Chung LY; Chung YH; Chen CC; Hsu CH; Fan SK; Yao DJ
    IEEE Trans Nanobioscience; 2015 Dec; 14(8):857-63. PubMed ID: 26529769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Digital Microfluidic Dynamic Culture of Mammalian Embryos on an Electrowetting on Dielectric (EWOD) Chip.
    Huang HY; Shen HH; Tien CH; Li CJ; Fan SK; Liu CH; Hsu WS; Yao DJ
    PLoS One; 2015; 10(5):e0124196. PubMed ID: 25933003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a Microfluidic Chip Powered by EWOD for In Vitro Manipulation of Bovine Embryos.
    Karcz A; Van Soom A; Smits K; Van Vlierberghe S; Verplancke R; Pascottini OB; Van den Abbeel E; Vanfleteren J
    Biosensors (Basel); 2023 Mar; 13(4):. PubMed ID: 37185494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro fertilization on a single-oocyte positioning system integrated with motile sperm selection and early embryo development.
    Ma R; Xie L; Han C; Su K; Qiu T; Wang L; Huang G; Xing W; Qiao J; Wang J; Cheng J
    Anal Chem; 2011 Apr; 83(8):2964-70. PubMed ID: 21438638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Droplet-on-a-wristband: chip-to-chip digital microfluidic interfaces between replaceable and flexible electrowetting modules.
    Fan SK; Yang H; Hsu W
    Lab Chip; 2011 Jan; 11(2):343-7. PubMed ID: 20957291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 3D microblade structure for precise and parallel droplet splitting on digital microfluidic chips.
    Dong C; Jia Y; Gao J; Chen T; Mak PI; Vai MI; Martins RP
    Lab Chip; 2017 Feb; 17(5):896-904. PubMed ID: 28194461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced blastocyst formation in reduced culture volume.
    De Munck N; Santos-Ribeiro S; Mateizel I; Verheyen G
    J Assist Reprod Genet; 2015 Sep; 32(9):1365-70. PubMed ID: 26292800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction of polyspermic penetration using biomimetic microfluidic technology during in vitro fertilization.
    Clark SG; Haubert K; Beebe DJ; Ferguson CE; Wheeler MB
    Lab Chip; 2005 Nov; 5(11):1229-32. PubMed ID: 16234945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards an electrowetting-based digital microfluidic platform for magnetic immunoassays.
    Schaller V; Sanz-Velasco A; Kalabukhov A; Schneiderman JF; Oisjöen F; Jesorka A; Astalan AP; Krozer A; Rusu C; Enoksson P; Winkler D
    Lab Chip; 2009 Dec; 9(23):3433-6. PubMed ID: 19904412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dielectrophoretic oocyte selection chip for in vitro fertilization.
    Choi W; Kim JS; Lee DH; Lee KK; Koo DB; Park JK
    Biomed Microdevices; 2008 Jun; 10(3):337-45. PubMed ID: 18071907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of a microfluidic sperm sorter to the in-vitro fertilization of porcine oocytes reduced the incidence of polyspermic penetration.
    Sano H; Matsuura K; Naruse K; Funahashi H
    Theriogenology; 2010 Sep; 74(5):863-70. PubMed ID: 20537694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brief coincubation of gametes in porcine in vitro fertilization: role of sperm:oocyte ratio and post-coincubation medium.
    Gil MA; Almiñana C; Cuello C; Parrilla I; Roca J; Vazquez JM; Martinez EA
    Theriogenology; 2007 Feb; 67(3):620-6. PubMed ID: 17055043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EWOD (electrowetting on dielectric) digital microfluidics powered by finger actuation.
    Peng C; Zhang Z; Kim CJ; Ju YS
    Lab Chip; 2014 Mar; 14(6):1117-22. PubMed ID: 24452784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro maturation and in vitro fertilization of mouse oocytes and preimplantation embryo culture.
    Kidder BL
    Methods Mol Biol; 2014; 1150():191-9. PubMed ID: 24743999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. IVF within microfluidic channels requires lower total numbers and lower concentrations of sperm.
    Suh RS; Zhu X; Phadke N; Ohl DA; Takayama S; Smith GD
    Hum Reprod; 2006 Feb; 21(2):477-83. PubMed ID: 16199424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of single oocyte trapping, in vitro fertilization and embryo culture in a microwell-structured microfluidic device.
    Han C; Zhang Q; Ma R; Xie L; Qiu T; Wang L; Mitchelson K; Wang J; Huang G; Qiao J; Cheng J
    Lab Chip; 2010 Nov; 10(21):2848-54. PubMed ID: 20844784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hatching of in vitro fertilized human embryos is influenced by fertilization method.
    Kirkegaard K; Hindkjaer JJ; Ingerslev HJ
    Fertil Steril; 2013 Nov; 100(5):1277-82. PubMed ID: 23909991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micromanipulation of gametes and embryos.
    Gordon JW
    Methods Enzymol; 1993; 225():207-38. PubMed ID: 8231857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High bovine blastocyst development in a static in vitro production system using SOFaa medium supplemented with sodium citrate and myo-inositol with or without serum-proteins.
    Holm P; Booth PJ; Schmidt MH; Greve T; Callesen H
    Theriogenology; 1999 Sep; 52(4):683-700. PubMed ID: 10734366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A droplet-to-digital (D2D) microfluidic device for single cell assays.
    Shih SC; Gach PC; Sustarich J; Simmons BA; Adams PD; Singh S; Singh AK
    Lab Chip; 2015 Jan; 15(1):225-36. PubMed ID: 25354549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.