BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 26530032)

  • 1. Characterization of the ecological role of genes mediating acid resistance in Lactobacillus reuteri during colonization of the gastrointestinal tract.
    Krumbeck JA; Marsteller NL; Frese SA; Peterson DA; Ramer-Tait AE; Hutkins RW; Walter J
    Environ Microbiol; 2016 Jul; 18(7):2172-84. PubMed ID: 26530032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genes Involved in Galactooligosaccharide Metabolism in Lactobacillus reuteri and Their Ecological Role in the Gastrointestinal Tract.
    Rattanaprasert M; van Pijkeren JP; Ramer-Tait AE; Quintero M; Kok CR; Walter J; Hutkins RW
    Appl Environ Microbiol; 2019 Nov; 85(22):. PubMed ID: 31519661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucosyltransferase A (GtfA) and inulosucrase (Inu) of Lactobacillus reuteri TMW1.106 contribute to cell aggregation, in vitro biofilm formation, and colonization of the mouse gastrointestinal tract.
    Walter J; Schwab C; Loach DM; Gänzle MG; Tannock GW
    Microbiology (Reading); 2008 Jan; 154(Pt 1):72-80. PubMed ID: 18174127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prophages in Lactobacillus reuteri Are Associated with Fitness Trade-Offs but Can Increase Competitiveness in the Gut Ecosystem.
    Oh JH; Lin XB; Zhang S; Tollenaar SL; Özçam M; Dunphy C; Walter J; van Pijkeren JP
    Appl Environ Microbiol; 2019 Dec; 86(1):. PubMed ID: 31676478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. D-alanyl ester depletion of teichoic acids in Lactobacillus reuteri 100-23 results in impaired colonization of the mouse gastrointestinal tract.
    Walter J; Loach DM; Alqumber M; Rockel C; Hermann C; Pfitzenmaier M; Tannock GW
    Environ Microbiol; 2007 Jul; 9(7):1750-60. PubMed ID: 17564608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of glutaminases to glutamine metabolism and acid resistance in Lactobacillus reuteri and other vertebrate host adapted lactobacilli.
    Li Q; Tao Q; Teixeira JS; Shu-Wei Su M; Gänzle MG
    Food Microbiol; 2020 Apr; 86():103343. PubMed ID: 31703887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental Evaluation of Host Adaptation of Lactobacillus reuteri to Different Vertebrate Species.
    Duar RM; Frese SA; Lin XB; Fernando SC; Burkey TE; Tasseva G; Peterson DA; Blom J; Wenzel CQ; Szymanski CM; Walter J
    Appl Environ Microbiol; 2017 Jun; 83(12):. PubMed ID: 28389535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glutamine, glutamate, and arginine-based acid resistance in Lactobacillus reuteri.
    Teixeira JS; Seeras A; Sanchez-Maldonado AF; Zhang C; Su MS; Gänzle MG
    Food Microbiol; 2014 Sep; 42():172-80. PubMed ID: 24929734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The pan-genome of Lactobacillus reuteri strains originating from the pig gastrointestinal tract.
    Wegmann U; MacKenzie DA; Zheng J; Goesmann A; Roos S; Swarbreck D; Walter J; Crossman LC; Juge N
    BMC Genomics; 2015 Dec; 16():1023. PubMed ID: 26626322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of glutamate decarboxylase in Lactobacillus reuteri to acid resistance and persistence in sourdough fermentation.
    Su MS; Schlicht S; Gänzle MG
    Microb Cell Fact; 2011 Aug; 10 Suppl 1(Suppl 1):S8. PubMed ID: 21995488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ecological Importance of Cross-Feeding of the Intermediate Metabolite 1,2-Propanediol between Bacterial Gut Symbionts.
    Cheng CC; Duar RM; Lin X; Perez-Munoz ME; Tollenaar S; Oh JH; van Pijkeren JP; Li F; van Sinderen D; Gänzle MG; Walter J
    Appl Environ Microbiol; 2020 May; 86(11):. PubMed ID: 32276972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular characterization of host-specific biofilm formation in a vertebrate gut symbiont.
    Frese SA; Mackenzie DA; Peterson DA; Schmaltz R; Fangman T; Zhou Y; Zhang C; Benson AK; Cody LA; Mulholland F; Juge N; Walter J
    PLoS Genet; 2013; 9(12):e1004057. PubMed ID: 24385934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-scale insights into the metabolic versatility of Limosilactobacillus reuteri.
    Luo H; Li P; Wang H; Roos S; Ji B; Nielsen J
    BMC Biotechnol; 2021 Jul; 21(1):46. PubMed ID: 34330235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The evolution of host specialization in the vertebrate gut symbiont Lactobacillus reuteri.
    Frese SA; Benson AK; Tannock GW; Loach DM; Kim J; Zhang M; Oh PL; Heng NC; Patil PB; Juge N; Mackenzie DA; Pearson BM; Lapidus A; Dalin E; Tice H; Goltsman E; Land M; Hauser L; Ivanova N; Kyrpides NC; Walter J
    PLoS Genet; 2011 Feb; 7(2):e1001314. PubMed ID: 21379339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lactobacillus reuteri 100-23 modulates urea hydrolysis in the murine stomach.
    Wilson CM; Loach D; Lawley B; Bell T; Sims IM; O'Toole PW; Zomer A; Tannock GW
    Appl Environ Microbiol; 2014 Oct; 80(19):6104-13. PubMed ID: 25063664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptional and metabolomic consequences of LuxS inactivation reveal a metabolic rather than quorum-sensing role for LuxS in Lactobacillus reuteri 100-23.
    Wilson CM; Aggio RB; O'Toole PW; Villas-Boas S; Tannock GW
    J Bacteriol; 2012 Apr; 194(7):1743-6. PubMed ID: 22287522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and functions of exopolysaccharide produced by gut commensal Lactobacillus reuteri 100-23.
    Sims IM; Frese SA; Walter J; Loach D; Wilson M; Appleyard K; Eason J; Livingston M; Baird M; Cook G; Tannock GW
    ISME J; 2011 Jul; 5(7):1115-24. PubMed ID: 21248858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative genomics of canine Lactobacillus reuteri reveals adaptation to a shared environment with humans.
    Son S; Oh JD; Lee SH; Shin D; Kim Y
    Genes Genomics; 2020 Sep; 42(9):1107-1116. PubMed ID: 32761525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resource partitioning in relation to cohabitation of Lactobacillus species in the mouse forestomach.
    Tannock GW; Wilson CM; Loach D; Cook GM; Eason J; O'Toole PW; Holtrop G; Lawley B
    ISME J; 2012 May; 6(5):927-38. PubMed ID: 22094343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coexpression and secretion of endoglucanase and phytase genes in Lactobacillus reuteri.
    Wang L; Yang Y; Cai B; Cao P; Yang M; Chen Y
    Int J Mol Sci; 2014 Jul; 15(7):12842-60. PubMed ID: 25050780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.