BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 26530215)

  • 1. Leaf mechanical resistance in plant trait databases: comparing the results of two common measurement methods.
    Enrico L; Díaz S; Westoby M; Rice BL
    Ann Bot; 2016 Jan; 117(1):209-14. PubMed ID: 26530215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue-level leaf toughness, but not lamina thickness, predicts sapling leaf lifespan and shade tolerance of tropical tree species.
    Kitajima K; Poorter L
    New Phytol; 2010 May; 186(3):708-21. PubMed ID: 20298481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global patterns of leaf mechanical properties.
    Onoda Y; Westoby M; Adler PB; Choong AM; Clissold FJ; Cornelissen JH; Díaz S; Dominy NJ; Elgart A; Enrico L; Fine PV; Howard JJ; Jalili A; Kitajima K; Kurokawa H; McArthur C; Lucas PW; Markesteijn L; Pérez-Harguindeguy N; Poorter L; Richards L; Santiago LS; Sosinski EE; Van Bael SA; Warton DI; Wright IJ; Wright SJ; Yamashita N
    Ecol Lett; 2011 Mar; 14(3):301-12. PubMed ID: 21265976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlations between leaf toughness and phenolics among species in contrasting environments of Australia and New Caledonia.
    Read J; Sanson GD; Caldwell E; Clissold FJ; Chatain A; Peeters P; Lamont BB; De Garine-Wichatitsky M; Jaffré T; Kerr S
    Ann Bot; 2009 Mar; 103(5):757-67. PubMed ID: 19098067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of light and nutrient availability on leaf mechanical properties of Plantago major: a conceptual approach.
    Onoda Y; Schieving F; Anten NP
    Ann Bot; 2008 Apr; 101(5):727-36. PubMed ID: 18272529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-infrared spectrometry allows fast and extensive predictions of functional traits from dry leaves and branches.
    Costa FRC; Lang C; Almeida DRA; Castilho CV; Poorter L
    Ecol Appl; 2018 Jul; 28(5):1157-1167. PubMed ID: 29768699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Venation networks and the origin of the leaf economics spectrum.
    Blonder B; Violle C; Bentley LP; Enquist BJ
    Ecol Lett; 2011 Feb; 14(2):91-100. PubMed ID: 21073643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leaf mechanical strength and photosynthetic capacity vary independently across 57 subtropical forest species with contrasting light requirements.
    He P; Wright IJ; Zhu S; Onoda Y; Liu H; Li R; Liu X; Hua L; Oyanoghafo OO; Ye Q
    New Phytol; 2019 Jul; 223(2):607-618. PubMed ID: 30887533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Herbarium-based measurements reliably estimate three functional traits.
    Perez TM; Rodriguez J; Mason Heberling J
    Am J Bot; 2020 Oct; 107(10):1457-1464. PubMed ID: 32945535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future.
    Sack L; Scoffoni C
    New Phytol; 2013 Jun; 198(4):983-1000. PubMed ID: 23600478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Which leaf mechanical traits correlate with insect herbivory among feeding guilds?
    Caldwell E; Read J; Sanson GD
    Ann Bot; 2016 Feb; 117(2):349-61. PubMed ID: 26715468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetically correlated leaf tensile and morphological traits are driven by growing season length in a widespread perennial grass.
    Durant PC; Bhasin A; Juenger TE; Heckman RW
    Am J Bot; 2024 May; 111(5):e16349. PubMed ID: 38783552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inferring climate from angiosperm leaf venation networks.
    Blonder B; Enquist BJ
    New Phytol; 2014 Oct; 204(1):116-126. PubMed ID: 24725225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant morphometric traits and climate gradients in northern China: a meta-analysis using quadrat and flora data.
    Meng TT; Ni J; Harrison SP
    Ann Bot; 2009 Nov; 104(6):1217-29. PubMed ID: 19805404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The acquisitive-conservative axis of leaf trait variation emerges even in homogeneous environments.
    Gorné LD; Díaz S; Minden V; Onoda Y; Kramer K; Muir C; Michaletz ST; Lavorel S; Sharpe J; Jansen S; Slot M; Chacon E; Boenisch G
    Ann Bot; 2022 May; 129(6):709-722. PubMed ID: 33245747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linking vein properties to leaf biomechanics across 58 woody species from a subtropical forest.
    Hua L; He P; Goldstein G; Liu H; Yin D; Zhu S; Ye Q
    Plant Biol (Stuttg); 2020 Mar; 22(2):212-220. PubMed ID: 31627255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Litter quality and decomposability of species from a Mediterranean succession depend on leaf traits but not on nitrogen supply.
    Kazakou E; Violle C; Roumet C; Pintor C; Gimenez O; Garnier E
    Ann Bot; 2009 Nov; 104(6):1151-61. PubMed ID: 19710073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linking leaf hydraulic properties, photosynthetic rates, and leaf lifespan in xerophytic species: a test of global hypotheses.
    Li F; McCulloh KA; Sun S; Bao W
    Am J Bot; 2018 Nov; 105(11):1858-1868. PubMed ID: 30449045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlations between leaf economics, mechanical resistance and drought tolerance across 41 cycad species.
    Meng YY; Xiang W; Wen Y; Huang DL; Cao KF; Zhu SD
    Ann Bot; 2022 Sep; 130(3):345-354. PubMed ID: 34871356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant functional traits predict green roof ecosystem services.
    Lundholm J; Tran S; Gebert L
    Environ Sci Technol; 2015 Feb; 49(4):2366-74. PubMed ID: 25599106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.