BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 26530236)

  • 1. A dynamin-like protein involved in bacterial cell membrane surveillance under environmental stress.
    Sawant P; Eissenberger K; Karier L; Mascher T; Bramkamp M
    Environ Microbiol; 2016 Sep; 18(8):2705-20. PubMed ID: 26530236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Bacterial Dynamin-Like Protein Confers a Novel Phage Resistance Strategy on the Population Level in Bacillus subtilis.
    Guo L; Sattler L; Shafqat S; Graumann PL; Bramkamp M
    mBio; 2021 Feb; 13(1):e0375321. PubMed ID: 35164550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial dynamin-like protein DynA mediates lipid and content mixing.
    Guo L; Bramkamp M
    FASEB J; 2019 Nov; 33(11):11746-11757. PubMed ID: 31361971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The deletion of bacterial dynamin and flotillin genes results in pleiotrophic effects on cell division, cell growth and in cell shape maintenance.
    Dempwolff F; Wischhusen HM; Specht M; Graumann PL
    BMC Microbiol; 2012 Dec; 12():298. PubMed ID: 23249255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assembly of Bacillus subtilis Dynamin into Membrane-Protective Structures in Response to Environmental Stress Is Mediated by Moderate Changes in Dynamics at a Single Molecule Level.
    Sattler L; Graumann PL
    Microb Physiol; 2022; 32(1-2):57-70. PubMed ID: 35272294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A bacterial dynamin-like protein mediating nucleotide-independent membrane fusion.
    Bürmann F; Ebert N; van Baarle S; Bramkamp M
    Mol Microbiol; 2011 Mar; 79(5):1294-304. PubMed ID: 21205012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of interaction partners of the dynamin-like protein DynA from Bacillus subtilis.
    Bürmann F; Sawant P; Bramkamp M
    Commun Integr Biol; 2012 Jul; 5(4):362-9. PubMed ID: 23060960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subcellular localization, interactions and dynamics of the phage-shock protein-like Lia response in Bacillus subtilis.
    Domínguez-Escobar J; Wolf D; Fritz G; Höfler C; Wedlich-Söldner R; Mascher T
    Mol Microbiol; 2014 May; 92(4):716-32. PubMed ID: 24666271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial dynamin-like proteins reveal mechanism for membrane fusion.
    Bramkamp M
    Nat Commun; 2018 Sep; 9(1):3993. PubMed ID: 30266939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and function of bacterial dynamin-like proteins.
    Bramkamp M
    Biol Chem; 2012 Nov; 393(11):1203-14. PubMed ID: 23109540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cell envelope stress response of Bacillus subtilis: from static signaling devices to dynamic regulatory network.
    Radeck J; Fritz G; Mascher T
    Curr Genet; 2017 Feb; 63(1):79-90. PubMed ID: 27344142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A bacterial dynamin-like protein.
    Low HH; Löwe J
    Nature; 2006 Dec; 444(7120):766-9. PubMed ID: 17122778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis for membrane tethering by a bacterial dynamin-like pair.
    Liu J; Noel JK; Low HH
    Nat Commun; 2018 Aug; 9(1):3345. PubMed ID: 30131557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic links between bacterial dynamin and flotillin proteins.
    Dempwolff F; Graumann PL
    Commun Integr Biol; 2014 Oct; 7(5):. PubMed ID: 26842743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamin: functional design of a membrane fission catalyst.
    Schmid SL; Frolov VA
    Annu Rev Cell Dev Biol; 2011; 27():79-105. PubMed ID: 21599493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacillus subtilis extracytoplasmic function (ECF) sigma factors and defense of the cell envelope.
    Helmann JD
    Curr Opin Microbiol; 2016 Apr; 30():122-132. PubMed ID: 26901131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-level iron mitigates fusaricidin-induced membrane damage and reduces membrane fluidity leading to enhanced drug resistance in Bacillus subtilis.
    Yu WB; Ye BC
    J Basic Microbiol; 2016 May; 56(5):502-9. PubMed ID: 26467177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for a novel protease governing regulated intramembrane proteolysis and resistance to antimicrobial peptides in Bacillus subtilis.
    Ellermeier CD; Losick R
    Genes Dev; 2006 Jul; 20(14):1911-22. PubMed ID: 16816000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting cell membrane adaptation as a novel antimicrobial strategy.
    Tran TT; Miller WR; Shamoo Y; Arias CA
    Curr Opin Microbiol; 2016 Oct; 33():91-96. PubMed ID: 27458841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of lipidation on the mode of action of a small RW-rich antimicrobial peptide.
    Wenzel M; Schriek P; Prochnow P; Albada HB; Metzler-Nolte N; Bandow JE
    Biochim Biophys Acta; 2016 May; 1858(5):1004-11. PubMed ID: 26603779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.