These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 26530314)
21. A critical role of autophagy in plant resistance to necrotrophic fungal pathogens. Lai Z; Wang F; Zheng Z; Fan B; Chen Z Plant J; 2011 Jun; 66(6):953-68. PubMed ID: 21395886 [TBL] [Abstract][Full Text] [Related]
22. Pathogen-induced Arabidopsis WRKY7 is a transcriptional repressor and enhances plant susceptibility to Pseudomonas syringae. Kim KC; Fan B; Chen Z Plant Physiol; 2006 Nov; 142(3):1180-92. PubMed ID: 16963526 [TBL] [Abstract][Full Text] [Related]
23. Jasmonate-dependent and COI1-independent defense responses against Sclerotinia sclerotiorum in Arabidopsis thaliana: auxin is part of COI1-independent defense signaling. Stotz HU; Jikumaru Y; Shimada Y; Sasaki E; Stingl N; Mueller MJ; Kamiya Y Plant Cell Physiol; 2011 Nov; 52(11):1941-56. PubMed ID: 21937677 [TBL] [Abstract][Full Text] [Related]
24. Stimulation or Inhibition: Conflicting evidence for (+/-)-catechin's role as a chemical facilitator and disease protecting agent. Bais HP; Venkatachalam L; Biedrzycki ML Plant Signal Behav; 2010 Mar; 5(3):239-46. PubMed ID: 20023372 [TBL] [Abstract][Full Text] [Related]
25. High REDOX RESPONSIVE TRANSCRIPTION FACTOR1 Levels Result in Accumulation of Reactive Oxygen Species in Arabidopsis thaliana Shoots and Roots. Matsuo M; Johnson JM; Hieno A; Tokizawa M; Nomoto M; Tada Y; Godfrey R; Obokata J; Sherameti I; Yamamoto YY; Böhmer FD; Oelmüller R Mol Plant; 2015 Aug; 8(8):1253-73. PubMed ID: 25882345 [TBL] [Abstract][Full Text] [Related]
26. Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor. Chen C; Chen Z Plant Physiol; 2002 Jun; 129(2):706-16. PubMed ID: 12068113 [TBL] [Abstract][Full Text] [Related]
27. The Arabidopsis ATAF1, a NAC transcription factor, is a negative regulator of defense responses against necrotrophic fungal and bacterial pathogens. Wang X; Basnayake BM; Zhang H; Li G; Li W; Virk N; Mengiste T; Song F Mol Plant Microbe Interact; 2009 Oct; 22(10):1227-38. PubMed ID: 19737096 [TBL] [Abstract][Full Text] [Related]
28. LBD14/ASL17 Positively Regulates Lateral Root Formation and is Involved in ABA Response for Root Architecture in Arabidopsis. Jeon E; Young Kang N; Cho C; Joon Seo P; Chung Suh M; Kim J Plant Cell Physiol; 2017 Dec; 58(12):2190-2201. PubMed ID: 29040694 [TBL] [Abstract][Full Text] [Related]
29. Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Zheng Z; Qamar SA; Chen Z; Mengiste T Plant J; 2006 Nov; 48(4):592-605. PubMed ID: 17059405 [TBL] [Abstract][Full Text] [Related]
30. Cleavage of INDOLE-3-ACETIC ACID INDUCIBLE28 mRNA by microRNA847 upregulates auxin signaling to modulate cell proliferation and lateral organ growth in Arabidopsis. Wang JJ; Guo HS Plant Cell; 2015 Mar; 27(3):574-90. PubMed ID: 25794935 [TBL] [Abstract][Full Text] [Related]
31. Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Iavicoli A; Boutet E; Buchala A; Métraux JP Mol Plant Microbe Interact; 2003 Oct; 16(10):851-8. PubMed ID: 14558686 [TBL] [Abstract][Full Text] [Related]
32. Differential control of pre-invasive and post-invasive antibacterial defense by the Arabidopsis circadian clock. Korneli C; Danisman S; Staiger D Plant Cell Physiol; 2014 Sep; 55(9):1613-22. PubMed ID: 24974385 [TBL] [Abstract][Full Text] [Related]
33. The Arabidopsis thaliana Mediator subunit MED8 regulates plant immunity to Botrytis Cinerea through interacting with the basic helix-loop-helix (bHLH) transcription factor FAMA. Li X; Yang R; Chen H PLoS One; 2018; 13(3):e0193458. PubMed ID: 29513733 [TBL] [Abstract][Full Text] [Related]
34. The Arabidopsis microtubule-associated protein MAP65-3 supports infection by filamentous biotrophic pathogens by down-regulating salicylic acid-dependent defenses. Quentin M; Baurès I; Hoefle C; Caillaud MC; Allasia V; Panabières F; Abad P; Hückelhoven R; Keller H; Favery B J Exp Bot; 2016 Mar; 67(6):1731-43. PubMed ID: 26798028 [TBL] [Abstract][Full Text] [Related]
35. Domain II mutations in CRANE/IAA18 suppress lateral root formation and affect shoot development in Arabidopsis thaliana. Uehara T; Okushima Y; Mimura T; Tasaka M; Fukaki H Plant Cell Physiol; 2008 Jul; 49(7):1025-38. PubMed ID: 18505759 [TBL] [Abstract][Full Text] [Related]
36. RNA-Seq Links the Transcription Factors AINTEGUMENTA and AINTEGUMENTA-LIKE6 to Cell Wall Remodeling and Plant Defense Pathways. Krizek BA; Bequette CJ; Xu K; Blakley IC; Fu ZQ; Stratmann JW; Loraine AE Plant Physiol; 2016 Jul; 171(3):2069-84. PubMed ID: 27208279 [TBL] [Abstract][Full Text] [Related]
37. PBL13 Is a Serine/Threonine Protein Kinase That Negatively Regulates Arabidopsis Immune Responses. Lin ZJ; Liebrand TW; Yadeta KA; Coaker G Plant Physiol; 2015 Dec; 169(4):2950-62. PubMed ID: 26432875 [TBL] [Abstract][Full Text] [Related]
38. Multilayered Regulation of Ethylene Induction Plays a Positive Role in Arabidopsis Resistance against Pseudomonas syringae. Guan R; Su J; Meng X; Li S; Liu Y; Xu J; Zhang S Plant Physiol; 2015 Sep; 169(1):299-312. PubMed ID: 26265775 [TBL] [Abstract][Full Text] [Related]
39. Colonization of the Arabidopsis rhizosphere by fluorescent Pseudomonas spp. activates a root-specific, ethylene-responsive PR-5 gene in the vascular bundle. Léon-Kloosterziel KM; Verhagen BW; Keurentjes JJ; VanPelt JA; Rep M; VanLoon LC; Pieterse CM Plant Mol Biol; 2005 Mar; 57(5):731-48. PubMed ID: 15988566 [TBL] [Abstract][Full Text] [Related]
40. The family of Peps and their precursors in Arabidopsis: differential expression and localization but similar induction of pattern-triggered immune responses. Bartels S; Lori M; Mbengue M; van Verk M; Klauser D; Hander T; Böni R; Robatzek S; Boller T J Exp Bot; 2013 Dec; 64(17):5309-21. PubMed ID: 24151300 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]