These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 26530351)

  • 41. Denitrification by Pseudomonas stutzeri coupled with CO2 reduction by Sporomusa ovata with hydrogen as an electron donor assisted by solid-phase humin.
    Xiao Z; Awata T; Zhang D; Katayama A
    J Biosci Bioeng; 2016 Sep; 122(3):307-13. PubMed ID: 26975755
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modelling bio-electrosynthesis in a reverse microbial fuel cell to produce acetate from CO2 and H2O.
    Kazemi M; Biria D; Rismani-Yazdi H
    Phys Chem Chem Phys; 2015 May; 17(19):12561-74. PubMed ID: 25898971
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Isolation of a cytochrome-deficient mutant strain of Sporomusa sphaeroides not capable of oxidizing methyl groups.
    Kamlage B; Blaut M
    J Bacteriol; 1993 May; 175(10):3043-50. PubMed ID: 8491723
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds.
    Nevin KP; Woodard TL; Franks AE; Summers ZM; Lovley DR
    mBio; 2010 May; 1(2):. PubMed ID: 20714445
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Requirement of carbon dioxide for initial growth of facultative methylotroph, Acidomonas methanolica MB58.
    Mitsui R; Katayama H; Tanaka M
    J Biosci Bioeng; 2015 Jul; 120(1):31-5. PubMed ID: 25511787
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genetic and metabolic engineering challenges of C1-gas fermenting acetogenic chassis organisms.
    Bourgade B; Minton NP; Islam MA
    FEMS Microbiol Rev; 2021 Mar; 45(2):. PubMed ID: 33595667
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Autotrophic hydrogen-producing biofilm growth sustained by a cathode as the sole electron and energy source.
    Jourdin L; Freguia S; Donose BC; Keller J
    Bioelectrochemistry; 2015 Apr; 102():56-63. PubMed ID: 25497168
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Adaptation of the acetogen Clostridium thermoautotrophicum to minimal medium.
    Savage MD; Drake HL
    J Bacteriol; 1986 Jan; 165(1):315-8. PubMed ID: 3941046
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Purification and characterization of a methanol-induced cobamide-containing protein from Sporomusa ovata.
    Stupperich E; Aulkemeyer P; Eckerskorn C
    Arch Microbiol; 1992; 158(5):370-3. PubMed ID: 1444720
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhancing acetone production from H
    Takemura K; Kato J; Kato S; Fujii T; Wada K; Iwasaki Y; Aoi Y; Matsushika A; Morita T; Murakami K; Nakashimada Y
    J Biosci Bioeng; 2023 Jul; 136(1):13-19. PubMed ID: 37100649
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Using a one-electron shuttle for the multielectron reduction of CO2 to methanol: kinetic, mechanistic, and structural insights.
    Cole EB; Lakkaraju PS; Rampulla DM; Morris AJ; Abelev E; Bocarsly AB
    J Am Chem Soc; 2010 Aug; 132(33):11539-51. PubMed ID: 20666494
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High-yield electrochemical production of formaldehyde from CO2 and seawater.
    Nakata K; Ozaki T; Terashima C; Fujishima A; Einaga Y
    Angew Chem Int Ed Engl; 2014 Jan; 53(3):871-4. PubMed ID: 24281847
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Influence of glucose fermentation on CO₂ assimilation to acetate in homoacetogen Blautia coccoides GA-1.
    Liu C; Li J; Zhang Y; Philip A; Shi E; Chi X; Meng J
    J Ind Microbiol Biotechnol; 2015 Sep; 42(9):1217-24. PubMed ID: 26153502
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Freestanding and flexible graphene papers as bioelectrochemical cathode for selective and efficient CO
    Aryal N; Halder A; Zhang M; Whelan PR; Tremblay PL; Chi Q; Zhang T
    Sci Rep; 2017 Aug; 7(1):9107. PubMed ID: 28831188
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The Geoglobus acetivorans genome: Fe(III) reduction, acetate utilization, autotrophic growth, and degradation of aromatic compounds in a hyperthermophilic archaeon.
    Mardanov AV; Slododkina GB; Slobodkin AI; Beletsky AV; Gavrilov SN; Kublanov IV; Bonch-Osmolovskaya EA; Skryabin KG; Ravin NV
    Appl Environ Microbiol; 2015 Feb; 81(3):1003-12. PubMed ID: 25416759
    [TBL] [Abstract][Full Text] [Related]  

  • 56. 2,3-Butanediol Metabolism in the Acetogen Acetobacterium woodii.
    Hess V; Oyrik O; Trifunović D; Müller V
    Appl Environ Microbiol; 2015 Jul; 81(14):4711-9. PubMed ID: 25934628
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Chemical Production from Methanol Using Natural and Synthetic Methylotrophs.
    Chen AY; Lan EI
    Biotechnol J; 2020 Jun; 15(6):e1900356. PubMed ID: 32281750
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genome-Guided Analysis and Whole Transcriptome Profiling of the Mesophilic Syntrophic Acetate Oxidising Bacterium Syntrophaceticus schinkii.
    Manzoor S; Bongcam-Rudloff E; Schnürer A; Müller B
    PLoS One; 2016; 11(11):e0166520. PubMed ID: 27851830
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Old acetogens, new light.
    Drake HL; Gössner AS; Daniel SL
    Ann N Y Acad Sci; 2008 Mar; 1125():100-28. PubMed ID: 18378590
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Solid neutral red/Nafion conductive layer on carbon felt electrode enhances acetate production from CO
    Li S; Kim M; Jae J; Jang M; Jeon BH; Kim JR
    Bioresour Technol; 2022 Nov; 363():127983. PubMed ID: 36126849
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.