These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 26530705)

  • 1. Bayesian penalized spline models for the analysis of spatio-temporal count data.
    Bauer C; Wakefield J; Rue H; Self S; Feng Z; Wang Y
    Stat Med; 2016 May; 35(11):1848-65. PubMed ID: 26530705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On fitting spatio-temporal disease mapping models using approximate Bayesian inference.
    Ugarte MD; Adin A; Goicoa T; Militino AF
    Stat Methods Med Res; 2014 Dec; 23(6):507-30. PubMed ID: 24713158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A spatio-temporal absorbing state model for disease and syndromic surveillance.
    Heaton MJ; Banks DL; Zou J; Karr AF; Datta G; Lynch J; Vera F
    Stat Med; 2012 Aug; 31(19):2123-36. PubMed ID: 22388709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing INLA and OpenBUGS for hierarchical Poisson modeling in disease mapping.
    Carroll R; Lawson AB; Faes C; Kirby RS; Aregay M; Watjou K
    Spat Spatiotemporal Epidemiol; 2015; 14-15():45-54. PubMed ID: 26530822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Bayesian spatio-temporal approach for real-time detection of disease outbreaks: a case study.
    Zou J; Karr AF; Datta G; Lynch J; Grannis S
    BMC Med Inform Decis Mak; 2014 Dec; 14():108. PubMed ID: 25476843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zero-inflated spatio-temporal models for disease mapping.
    Torabi M
    Biom J; 2017 May; 59(3):430-444. PubMed ID: 28187237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regression B-spline smoothing in Bayesian disease mapping: with an application to patient safety surveillance.
    MacNab YC; Gustafson P
    Stat Med; 2007 Oct; 26(24):4455-74. PubMed ID: 17357989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistical monitoring of the hand, foot and mouth disease in China.
    Zhang J; Kang Y; Yang Y; Qiu P
    Biometrics; 2015 Sep; 71(3):841-50. PubMed ID: 25832170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of spatio-temporal model to estimate burden of diseases, injuries and risk factors in Iran 1990 - 2013.
    Parsaeian M; Farzadfar F; Zeraati H; Mahmoudi M; Rahimighazikalayeh G; Navidi I; Niakan Kalhori SR; Mohammad K; Jafari Khaledi M
    Arch Iran Med; 2014 Jan; 17(1):28-33. PubMed ID: 24444062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A tutorial on spatio-temporal disease risk modelling in R using Markov chain Monte Carlo simulation and the CARBayesST package.
    Lee D
    Spat Spatiotemporal Epidemiol; 2020 Aug; 34():100353. PubMed ID: 32807395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial and spatio-temporal models with R-INLA.
    Blangiardo M; Cameletti M; Baio G; Rue H
    Spat Spatiotemporal Epidemiol; 2013 Dec; 7():39-55. PubMed ID: 24377114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epidemiological characteristics and temporal-spatial clustering analysis of hand, foot and mouth disease in Nanchang city 2008-2012.
    Cao F; Huang P
    Infect Dis (Lond); 2015 Jan; 47(1):33-8. PubMed ID: 25400030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial and spatio-temporal models with R-INLA.
    Blangiardo M; Cameletti M; Baio G; Rue H
    Spat Spatiotemporal Epidemiol; 2013 Mar; 4():33-49. PubMed ID: 23481252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bayesian Spatial Joint Model for Disease Mapping of Zero-Inflated Data with R-INLA: A Simulation Study and an Application to Male Breast Cancer in Iran.
    Asmarian N; Ayatollahi SMT; Sharafi Z; Zare N
    Int J Environ Res Public Health; 2019 Nov; 16(22):. PubMed ID: 31766251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-space-time CAR models in Bayesian disease mapping.
    Goicoa T; Ugarte MD; Etxeberria J; Militino AF
    Stat Med; 2016 Jun; 35(14):2391-405. PubMed ID: 26814019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Bayesian method for construction of Markov models to describe dynamics on various time-scales.
    Rains EK; Andersen HC
    J Chem Phys; 2010 Oct; 133(14):144113. PubMed ID: 20949993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Temporal and spatial clustering characteristics and changes of severe hand, foot, and mouth disease in mainland of China, from 2008 to 2013].
    Yu S; Zhou Z; Yang F; Xiao G; Ma J
    Zhonghua Liu Xing Bing Xue Za Zhi; 2014 Mar; 35(3):271-5. PubMed ID: 24831625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatiotemporal Dynamics of Hand-Foot-Mouth Disease and Its Relationship with Meteorological Factors in Jiangsu Province, China.
    Liu W; Ji H; Shan J; Bao J; Sun Y; Li J; Bao C; Tang F; Yang K; Bergquist R; Peng Z; Zhu Y
    PLoS One; 2015; 10(6):e0131311. PubMed ID: 26121573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Skew-elliptical spatial random effect modeling for areal data with application to mapping health utilization rates.
    Nathoo FS; Ghosh P
    Stat Med; 2013 Jan; 32(2):290-306. PubMed ID: 22815268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial dynamic patterns of hand-foot-mouth disease in the People's Republic of China.
    Wang JF; Xu CD; Tong SL; Chen HY; Yang WZ
    Geospat Health; 2013 May; 7(2):381-90. PubMed ID: 23733299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.