These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 26530849)

  • 1. Mechanical evaluation of newly developed mouthpiece using polyethylene terephthalate glycol for transoral robotic surgery.
    Fujiwara K; Fukuhara T; Niimi K; Sato T; Kataoka H; Kitano H; Takeuchi H
    J Robot Surg; 2015 Dec; 9(4):347-54. PubMed ID: 26530849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Load evaluation of the da Vinci surgical system for transoral robotic surgery.
    Fujiwara K; Fukuhara T; Niimi K; Sato T; Kitano H
    J Robot Surg; 2015 Dec; 9(4):315-9. PubMed ID: 26530845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Settings, Pros and Cons of the New Surgical Robot da Vinci Xi System for Transoral Robotic Surgery (TORS): A Comparison With the Popular da Vinci Si System.
    Kim DH; Kim H; Kwak S; Baek K; Na G; Kim JH; Kim SH
    Surg Laparosc Endosc Percutan Tech; 2016 Oct; 26(5):391-396. PubMed ID: 27661201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does hard insertion and space improve shock absorption ability of mouthguard?
    Takeda T; Ishigami K; Handa J; Naitoh K; Kurokawa K; Shibusawa M; Nakajima K; Kawamura S
    Dent Traumatol; 2006 Apr; 22(2):77-82. PubMed ID: 16499630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Critical analysis of robotic surgery for laryngeal tumours.
    Esteban F; Menoyo A; Abrante A
    Acta Otorrinolaringol Esp; 2014; 65(6):365-72. PubMed ID: 24626048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transoral robotic surgery (TORS) in Japan: procedures, advantages and current status.
    Sano D; Tateya I; Hori R; Ueda T; Mori T; Maruo T; Tsukahara K; Oridate N;
    Jpn J Clin Oncol; 2024 Mar; 54(3):248-253. PubMed ID: 38061912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transoral robotic surgery (TORS) for benign pharyngeal lesions.
    Chan JY; Richmon JD
    Otolaryngol Clin North Am; 2014 Jun; 47(3):407-13. PubMed ID: 24882798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical and mechanical characteristics of contemporary thermoplastic orthodontic materials.
    Alexandropoulos A; Al Jabbari YS; Zinelis S; Eliades T
    Aust Orthod J; 2015 Nov; 31(2):165-70. PubMed ID: 26999889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of intraoperative safety in transoral robotic surgery.
    Hockstein NG; O'Malley BW; Weinstein GS
    Laryngoscope; 2006 Feb; 116(2):165-8. PubMed ID: 16467698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a Transoral Robotic Surgery Training Platform
    Geoghegan R; Song J; Singh A; Le T; Abiri A; Mendelsohn AH
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5851-5854. PubMed ID: 31947182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Initial experience with transoral robotic surgery using the da Vinci® surgical system].
    Simon C; El-Baba B; Albrecht T; Holsinger FC; Plinkert PK
    HNO; 2011 Mar; 59(3):261-5. PubMed ID: 21424364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Does transition from the da Vinci Si to Xi robotic platform impact single-docking technique for robot-assisted laparoscopic nephroureterectomy?
    Patel MN; Aboumohamed A; Hemal A
    BJU Int; 2015 Dec; 116(6):990-4. PubMed ID: 26123244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of different attachment geometries on the mechanical load exerted by PET‑G aligners during derotation of mandibular canines : An in vitro study.
    Elkholy F; Mikhaiel B; Repky S; Schmidt F; Lapatki BG
    J Orofac Orthop; 2019 Nov; 80(6):315-326. PubMed ID: 31595320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transoral robotic surgery (TORS) in laryngeal and hypopharyngeal cancer.
    Park YM; Lee WJ; Lee JG; Lee WS; Choi EC; Chung SM; Kim SH
    J Laparoendosc Adv Surg Tech A; 2009 Jun; 19(3):361-8. PubMed ID: 19405798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implementation of a comprehensive competency-based transoral robotic surgery training curriculum with ex vivo dissection models.
    Sobel RH; Blanco R; Ha PK; Califano JA; Kumar R; Richmon JD
    Head Neck; 2016 Oct; 38(10):1553-63. PubMed ID: 27152633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A flexible, single-arm robotic surgical system for transoral resection of the tonsil and lateral pharyngeal wall: Next-generation robotic head and neck surgery.
    Holsinger FC
    Laryngoscope; 2016 Apr; 126(4):864-9. PubMed ID: 26509920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transoral robotic-assisted surgery for the approach to anterior cervical spine lesions.
    Molteni G; Greco MG; Presutti L
    Eur Arch Otorhinolaryngol; 2017 Nov; 274(11):4011-4016. PubMed ID: 28864959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Imaging-Compatible Oral Retractor System for Transoral Robotic Surgery.
    Shi Y; Wu X; Paydarfar JA; Halter RJ
    Ann Biomed Eng; 2024 Sep; 52(9):2473-2484. PubMed ID: 38796669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved transoral surgical tool design by CT measurements of the oral cavity and pharynx.
    Cox E; Ghasemloonia A; Nakoneshny SC; Zareinia K; Hudon M; Lysack JT; Sutherland GR; Dort JC
    J Robot Surg; 2017 Jun; 11(2):179-185. PubMed ID: 27664143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The essential work of fracture of thermoplastic orthodontic retainer materials.
    Pascual AL; Beeman CS; Hicks EP; Bush HM; Mitchell RJ
    Angle Orthod; 2010 May; 80(3):554-61. PubMed ID: 20050752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.