BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 26530855)

  • 1. Activity prediction of substrates in NADH-dependent carbonyl reductase by docking requires catalytic constraints and charge parameterization of catalytic zinc environment.
    Dhoke GV; Loderer C; Davari MD; Ansorge-Schumacher M; Schwaneberg U; Bocola M
    J Comput Aided Mol Des; 2015 Nov; 29(11):1057-69. PubMed ID: 26530855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of Structural Determinants for the Substrate Specificity in the Zinc-Dependent Alcohol Dehydrogenase CPCR2 from Candida parapsilosis.
    Loderer C; Dhoke GV; Davari MD; Kroutil W; Schwaneberg U; Bocola M; Ansorge-Schumacher MB
    Chembiochem; 2015 Jul; 16(10):1512-9. PubMed ID: 26096455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. What's My Substrate? Computational Function Assignment of Candida parapsilosis ADH5 by Genome Database Search, Virtual Screening, and QM/MM Calculations.
    Dhoke GV; Ensari Y; Davari MD; Ruff AJ; Schwaneberg U; Bocola M
    J Chem Inf Model; 2016 Jul; 56(7):1313-23. PubMed ID: 27387009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The catalytic mechanism of NADH-dependent reduction of 9,10-phenanthrenequinone by Candida tenuis xylose reductase reveals plasticity in an aldo-keto reductase active site.
    Pival SL; Klimacek M; Nidetzky B
    Biochem J; 2009 Jun; 421(1):43-9. PubMed ID: 19368528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reengineered carbonyl reductase for reducing methyl-substituted cyclohexanones.
    Jakoblinnert A; Wachtmeister J; Schukur L; Shivange AV; Bocola M; Ansorge-Schumacher MB; Schwaneberg U
    Protein Eng Des Sel; 2013 Apr; 26(4):291-8. PubMed ID: 23355692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic reaction profile for NADH-dependent reduction of aromatic aldehydes by xylose reductase from Candida tenuis.
    Mayr P; Nidetzky B
    Biochem J; 2002 Sep; 366(Pt 3):889-99. PubMed ID: 12003638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Semiautomated Structure-Based Method To Predict Substrates of Enzymes via Molecular Docking: A Case Study with Candida antarctica Lipase B.
    Yao Z; Zhang L; Gao B; Cui D; Wang F; He X; Zhang JZ; Wei D
    J Chem Inf Model; 2016 Oct; 56(10):1979-1994. PubMed ID: 27529495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel NADH-dependent carbonyl reductase with unusual stereoselectivity for (R)-specific reduction from an (S)-1-phenyl-1,2-ethanediol-producing micro-organism: purification and characterization.
    Nie Y; Xu Y; Yang M; Mu XQ
    Lett Appl Microbiol; 2007 May; 44(5):555-62. PubMed ID: 17451525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Docking studies of matrix metalloproteinase inhibitors: zinc parameter optimization to improve the binding free energy prediction.
    Hu X; Shelver WH
    J Mol Graph Model; 2003 Nov; 22(2):115-26. PubMed ID: 12932782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic mechanism and substrate selectivity of aldo-keto reductases: insights from structure-function studies of Candida tenuis xylose reductase.
    Kratzer R; Wilson DK; Nidetzky B
    IUBMB Life; 2006 Sep; 58(9):499-507. PubMed ID: 17002977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrostatic stabilization in a pre-organized polar active site: the catalytic role of Lys-80 in Candida tenuis xylose reductase (AKR2B5) probed by site-directed mutagenesis and functional complementation studies.
    Kratzer R; Nidetzky B
    Biochem J; 2005 Jul; 389(Pt 2):507-15. PubMed ID: 15799715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of human chi chi alcohol dehydrogenase: a glutathione-dependent formaldehyde dehydrogenase.
    Yang ZN; Bosron WF; Hurley TD
    J Mol Biol; 1997 Jan; 265(3):330-43. PubMed ID: 9018047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of a catalytic zinc binding site in Escherichia coli L-threonine dehydrogenase by site-directed mutagenesis of cysteine-38.
    Johnson AR; Chen YW; Dekker EE
    Arch Biochem Biophys; 1998 Oct; 358(2):211-21. PubMed ID: 9784233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of a novel NADH-specific aldo-keto reductase using sequence and structural homologies.
    Di Luccio E; Elling RA; Wilson DK
    Biochem J; 2006 Nov; 400(1):105-14. PubMed ID: 16813561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystallographic analysis and structure-guided engineering of NADPH-dependent Ralstonia sp. alcohol dehydrogenase toward NADH cosubstrate specificity.
    Lerchner A; Jarasch A; Meining W; Schiefner A; Skerra A
    Biotechnol Bioeng; 2013 Nov; 110(11):2803-14. PubMed ID: 23686719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of binding modes and affinities of 4-substituted-2,3,5,6-tetrafluorobenzenesulfonamide inhibitors to the carbonic anhydrase receptor by docking and ONIOM calculations.
    Samanta PN; Das KK
    J Mol Graph Model; 2016 Jan; 63():38-48. PubMed ID: 26619075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovery of a novel ortho-haloacetophenones-specific carbonyl reductase from Bacillus aryabhattai and insight into the molecular basis for its catalytic performance.
    Li A; Yuchi Q; Li X; Pang W; Li B; Xue F; Zhang L
    Int J Biol Macromol; 2019 Oct; 138():781-790. PubMed ID: 31351953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular docking for substrate identification: the short-chain dehydrogenases/reductases.
    Favia AD; Nobeli I; Glaser F; Thornton JM
    J Mol Biol; 2008 Jan; 375(3):855-74. PubMed ID: 18036612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unusual NADPH conformation in the crystal structure of a cinnamyl alcohol dehydrogenase from Helicobacter pylori in complex with NADP(H) and substrate docking analysis.
    Seo KH; Zhuang N; Chen C; Song JY; Kang HL; Rhee KH; Lee KH
    FEBS Lett; 2012 Feb; 586(4):337-43. PubMed ID: 22269576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing the stereoselectivity of carbonyl reductases toward the reduction of OPBE and docking analysis.
    Chen R; Deng J; Lin J; Yin X; Xie T; Yang S; Wei D
    Biotechnol Appl Biochem; 2016 Jul; 63(4):465-70. PubMed ID: 25989134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.