These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
267 related articles for article (PubMed ID: 26530959)
1. Tissue-specific production of limonene in Camelina sativa with the Arabidopsis promoters of genes BANYULS and FRUITFULL. Borghi M; Xie DY Planta; 2016 Feb; 243(2):549-61. PubMed ID: 26530959 [TBL] [Abstract][Full Text] [Related]
2. Engineering Camelina sativa (L.) Crantz for enhanced oil and seed yields by combining diacylglycerol acyltransferase1 and glycerol-3-phosphate dehydrogenase expression. Chhikara S; Abdullah HM; Akbari P; Schnell D; Dhankher OP Plant Biotechnol J; 2018 May; 16(5):1034-1045. PubMed ID: 28975735 [TBL] [Abstract][Full Text] [Related]
3. Camelina sativa: An ideal platform for the metabolic engineering and field production of industrial lipids. Bansal S; Durrett TP Biochimie; 2016 Jan; 120():9-16. PubMed ID: 26107412 [TBL] [Abstract][Full Text] [Related]
4. Enhancing microRNA167A expression in seed decreases the α-linolenic acid content and increases seed size in Camelina sativa. Na G; Mu X; Grabowski P; Schmutz J; Lu C Plant J; 2019 Apr; 98(2):346-358. PubMed ID: 30604453 [TBL] [Abstract][Full Text] [Related]
5. Constitutive or seed-specific overexpression of Arabidopsis G-protein γ subunit 3 (AGG3) results in increased seed and oil production and improved stress tolerance in Camelina sativa. Roy Choudhury S; Riesselman AJ; Pandey S Plant Biotechnol J; 2014 Jan; 12(1):49-59. PubMed ID: 24102738 [TBL] [Abstract][Full Text] [Related]
6. Camelina seed transcriptome: a tool for meal and oil improvement and translational research. Nguyen HT; Silva JE; Podicheti R; Macrander J; Yang W; Nazarenus TJ; Nam JW; Jaworski JG; Lu C; Scheffler BE; Mockaitis K; Cahoon EB Plant Biotechnol J; 2013 Aug; 11(6):759-69. PubMed ID: 23551501 [TBL] [Abstract][Full Text] [Related]
7. Production of mono- and sesquiterpenes in Camelina sativa oilseed. Augustin JM; Higashi Y; Feng X; Kutchan TM Planta; 2015 Sep; 242(3):693-708. PubMed ID: 26223979 [TBL] [Abstract][Full Text] [Related]
8. Camelina sativa, an oilseed at the nexus between model system and commercial crop. Malik MR; Tang J; Sharma N; Burkitt C; Ji Y; Mykytyshyn M; Bohmert-Tatarev K; Peoples O; Snell KD Plant Cell Rep; 2018 Oct; 37(10):1367-1381. PubMed ID: 29881973 [TBL] [Abstract][Full Text] [Related]
9. Redirection of metabolic flux for high levels of omega-7 monounsaturated fatty acid accumulation in camelina seeds. Nguyen HT; Park H; Koster KL; Cahoon RE; Nguyen HT; Shanklin J; Clemente TE; Cahoon EB Plant Biotechnol J; 2015 Jan; 13(1):38-50. PubMed ID: 25065607 [TBL] [Abstract][Full Text] [Related]
10. Production of high levels of poly-3-hydroxybutyrate in plastids of Camelina sativa seeds. Malik MR; Yang W; Patterson N; Tang J; Wellinghoff RL; Preuss ML; Burkitt C; Sharma N; Ji Y; Jez JM; Peoples OP; Jaworski JG; Cahoon EB; Snell KD Plant Biotechnol J; 2015 Jun; 13(5):675-88. PubMed ID: 25418911 [TBL] [Abstract][Full Text] [Related]
11. Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing. Jiang WZ; Henry IM; Lynagh PG; Comai L; Cahoon EB; Weeks DP Plant Biotechnol J; 2017 May; 15(5):648-657. PubMed ID: 27862889 [TBL] [Abstract][Full Text] [Related]
12. Interactions between genetics and environment shape Camelina seed oil composition. Brock JR; Scott T; Lee AY; Mosyakin SL; Olsen KM BMC Plant Biol; 2020 Sep; 20(1):423. PubMed ID: 32928104 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of oleyl oleate wax esters in Arabidopsis thaliana and Camelina sativa seed oil. Iven T; Hornung E; Heilmann M; Feussner I Plant Biotechnol J; 2016 Jan; 14(1):252-9. PubMed ID: 25912558 [TBL] [Abstract][Full Text] [Related]
14. Improving seed size, seed weight and seedling emergence in Camelina sativa by overexpressing the Atsob3-6 gene variant. Sharma Koirala P; Neff MM Transgenic Res; 2020 Aug; 29(4):409-418. PubMed ID: 32748170 [TBL] [Abstract][Full Text] [Related]
15. In Silico Analysis of Fatty Acid Desaturases Structures in Raboanatahiry N; Yin Y; Chen K; He J; Yu L; Li M Int J Mol Sci; 2021 Oct; 22(19):. PubMed ID: 34639198 [TBL] [Abstract][Full Text] [Related]
16. Accumulation of medium-chain, saturated fatty acyl moieties in seed oils of transgenic Camelina sativa. Hu Z; Wu Q; Dalal J; Vasani N; Lopez HO; Sederoff HW; Qu R PLoS One; 2017; 12(2):e0172296. PubMed ID: 28212406 [TBL] [Abstract][Full Text] [Related]
17. Cosuppression of limonene-3-hydroxylase in peppermint promotes accumulation of limonene in the essential oil. Mahmoud SS; Williams M; Croteau R Phytochemistry; 2004 Mar; 65(5):547-54. PubMed ID: 15003417 [TBL] [Abstract][Full Text] [Related]
18. Overexpression of patatin-related phospholipase AIIIδ altered plant growth and increased seed oil content in camelina. Li M; Wei F; Tawfall A; Tang M; Saettele A; Wang X Plant Biotechnol J; 2015 Aug; 13(6):766-78. PubMed ID: 25557877 [TBL] [Abstract][Full Text] [Related]
19. Overexpression of a synthetic insect-plant geranyl pyrophosphate synthase gene in Camelina sativa alters plant growth and terpene biosynthesis. Xi J; Rossi L; Lin X; Xie DY Planta; 2016 Jul; 244(1):215-30. PubMed ID: 27023458 [TBL] [Abstract][Full Text] [Related]
20. Generation of transgenic plants of a potential oilseed crop Camelina sativa by Agrobacterium-mediated transformation. Lu C; Kang J Plant Cell Rep; 2008 Feb; 27(2):273-8. PubMed ID: 17899095 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]